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Abstract
Introduction: Although growth hormone (GH) is essential 
for attainment of peak bone mass, bone health in prepuber-
tal children with GH deficiency is not routinely evaluated. 
The objective of this study was to evaluate bone microarchi-
tecture in GH-deficient (GHD) boys using high-resolution pe-
ripheral quantitative computed tomography (HR-pQCT). 
Methods: Fifteen control and fifteen GHD, GH naïve pre-pu-
bertal boys were recruited for a case-control study at a major 
academic center. Subjects with panhypopituitarism, chro-
mosomal pathology, chronic steroids, or stimulant use were 
excluded. Volumetric bone mineral density (vBMD; total, 
cortical, and trabecular), bone geometry (total, cortical and 
trabecular cross-sectional area, cortical perimeter), bone mi-
croarchitecture, and estimated bone strength of the distal 
radius and tibia were assessed by HR-pQCT. Areal BMD and 
body composition were assessed by DXA. Insulin-like growth 
factor 1 (IGF-1), osteocalcin, C telopeptide, and P1NP levels 

were measured. Results: GHD subjects had a significantly 
smaller cortical perimeter of the distal radius compared to 
controls (p < 0.001), with the difference in cortical perimeter 
persisting after adjusting for height z score, age, lean mass, 
and 25-hydroxyvitamin D level (p < 0.05). No significant dif-
ferences were found in vBMD. No significant differences 
were found in microarchitecture, estimated strength, areal 
BMD, body composition, or bone turnover markers. Analysis 
showed significant positive correlations between IGF-1 lev-
els and cortical parameters. Discussion/Conclusions: Prepu-
bertal GHD boys had deficits in bone geometry not evident 
with DXA. Larger prospective/longitudinal HR-pQCT studies 
are needed to determine the extent of these deficits, the 
need for routine bone evaluation, and the timing of GH re-
placement for prevention or restoration of these deficits.

© 2020 S. Karger AG, Basel

Introduction

Although growth hormone (GH) is responsible for 
longitudinal bone growth, it also plays an important role 
in building and maintaining bone mineral density (BMD) 
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and in altering bone architecture throughout life [1, 2]. 
GH, by acting directly and by stimulating insulin-like 
growth factor 1 (IGF-1), is essential for achieving peak 
bone mass, and contributes to mitigating the risk of os-
teoporosis and subsequent fracture in the future [2–5]. 
GH deficiency during childhood and puberty may com-
promise accrual of bone mass and formation of normal 
bone architecture because a significant amount of bone 
mass is achieved by the end of puberty, with peak bone 
mass achieved during the late second to early third decade 
of life [3, 6]. Even though GH-deficient (GHD) prepuber-
tal children may not be at risk for fractures, studies have 
shown that untreated children with GH deficiency (mean 
age 7–11.7 years) have lower dual X ray absorptiometry 
(DXA) measures of bone mineral apparent density 
(BMAD, as an estimate of volumetric BMD) of the lum-
bar spine, radius, and total body [2, 7–9], while untreated 
adults with GH deficiency have increased fracture risk as 
well as lower BMD scores [10–12].

Prior studies in GHD children have evaluated BMD us-
ing DXA, though this method has significant disadvantag-
es. Measurements are affected by size, thereby underesti-
mating BMD in people with smaller stature [13]. Addition-
ally, DXA only measures areal BMD from a 2-D projection 
of bone and does not measure actual vBMD (volumetric 
BMD). Resolution of the images is low, and DXA cannot be 
used to assess BMD in the cortical and trabecular bone sep-
arately or assess microarchitectural characteristics that also 
contribute to bone strength [14–16].

High-resolution peripheral quantitative computed to-
mography (HR-pQCT) is a state-of-the art imaging tech-
nology that can scan human subjects in vivo at resolu-
tions high enough to enable characterization and eval-
uation of volumetric density, geometry, and micro- 
architecture. As the resolution is high (voxel size 61 µm), 
it even allows for segmentation of trabecular and cortical 
bone and their respective evaluation. Bone microarchi-
tecture and bone density contribute to increased bone 
strength [17, 18] which can decrease risk of fracture in 
children [19, 20]. Knowledge regarding the effects of GH 
deficiency on skeletal health is limited though because 
bone parameters are not routinely evaluated in young 
children with GH deficiency. A recent HR-pQCT study 
in adults with childhood-onset GH deficiency who were 
no longer receiving GH replacement showed deficits in 
vBMD, architecture, and bone strength [21]. Schweizer et 
al. [22] performed the only study evaluating trabecular 
and cortical bone compartments in the pediatric GHD 
population, using a lower-resolution imaging technique 
(peripheral QCT) with the inability to evaluate microar-

chitectural bone features. Additionally, studies using HR-
pQCT in healthy children tend to focus on the adolescent 
or peripubertal populations [23, 24]. Proper characteriza-
tion of bone health in young, prepubertal GHD children 
has significant implications for a critical window of inter-
vention which can impact long-term bone health.

The primary goal of this study was to use HR-pQCT 
to evaluate bone geometry, vBMD, bone architecture, and 
bone strength in GHD pre-pubertal boys compared to 
healthy control subjects. The relationship between GH 
levels, IGF-1 levels, bone markers, and HR-pQCT mea-
sures was also assessed in the GHD cohort.

Materials and Methods

Participants
A total of 30 boys, 5–11 years of age were recruited between 2016 

and 2018 from the general pediatric practices and the pediatric en-
docrinology practice associated with Columbia University Medical 
Center, as well as other nearby practices. Informed consent was 
obtained from a parent or legal guardian, and assent was obtained 
for children > 7 years of age. The study was approved by the Insti-
tutional Review Board of Columbia University Medical Center. All 
participants were assessed as prepubertal based on evaluation of 
testicular size < 4 cm3 and had no disabilities that would limit nor-
mal physical activity. Fifteen boys had isolated GHD and were naive 
to therapy. Along with height and growth velocity measurements, 
the diagnosis of GHD was reconfirmed with a peak serum GH lev-
el < 10 ng/mL in response to 2 stimulation tests (clonidine/arginine, 
glucagon, or arginine/L-dopa) [25]. All bone age (BA) studies were 
documented and assessed by the pediatric endocrinologist and the 
radiologist. Standards of Greulich and Pyle were used to estimate 
BA. Fifteen subjects with heights between the 3rd and 97th percen-
tiles who were healthy, with no concerns regarding height or 
growth velocity served as controls and were recruited from the gen-
eral pediatric practices affiliated with Columbia as well as other 
nearby practices. Control and GHD subjects were not matched for 
height, as that would have required including much younger con-
trol subjects. Neither control nor GHD participants had chronic 
health issues (beyond GHD) that would interfere with bone health, 
and all were ambulatory. Children with panhypopituitarism, chro-
mosomal diagnosis, or on chronic medication, including levothy-
roxine, systemic or inhaled steroids, or stimulants, were not in-
cluded. Use of intermittent antihistamines and vitamin supple-
mentation was allowed. All children were born at appropriate size 
for gestational age. Nutritional history was not formally evaluated. 
Ethnicity was determined based on parental self-report. In the con-
trol group, there were 9 Hispanic children, 4 Caucasian children, 1 
African-American child, and 1 Asian child. In the GHD group, 
there were 7 Hispanic children, 4 Caucasian children, 1 African 
child, 2 Asian children, and 1 Middle Eastern child. 

Anthropometric Data Acquisition
Standing heights and weights were measured using a wall-

mounted stadiometer and electronic scale, with participants 
dressed in light clothing. To determine growth velocity from med-
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ical records in GHD subjects, height measurements were taken at 
intervals of 4–6 months. Radial length was assessed as the distance 
from the olecranon to the ulnar styloid process, measured medi-
ally with elbow flexed at a 90-degree angle and palm facing inward. 
Tibial length was assessed as the distance from the medial malleo-
lus to medial tibial plateau, measured with the knee flexed at a 
90-degree angle to the floor [24]. 

Calculated vBMD and Body Composition Acquisition Using 
DXA
DXA scans were obtained at the Body Composition Unit of Co-

lumbia University Medical Center. DXA scans of the whole body 
excluding head, posteroanterior lumbar spine (L1–L4) and right 
forearm were obtained using Hologic QDR 4500 in array mode 
(Hologic Inc., Waltham, MA, USA). Scans were analyzed using 
APEX 4.5.3 software and read by 2 certified densitometrists in the 
division of pediatric endocrinology (A.S. and I.F.) for quality assur-
ance. Height correction was performed for all subjects [26].

Bone Architecture, vBMD and Strength Acquisition with  
HR-pQCT
Trabecular and cortical vBMD and microarchitecture were as-

sessed using HR-pQCT (XtremeCT-II, Scanco Medical, Brüt-

tisellen, Switzerland). Each subject’s right radius and tibia were 
scanned and placed in a carbon-fiber cast to minimize limb motion 
during scan acquisition. If the subject had a history of fracture in the 
right limb, then the left limb was scanned. A standard anteroposte-
rior scout view was taken (fixed settings of the machine) to assess 
the growth plate and then place the reference line at the most prox-
imal end of the growth plate in order to ensure that the growth plate 
was not irradiated, although the radiation dosage was very minimal 
(< 5 µSv/scan). A 10.2-mm scan region comprising of 168 slices with 
an isotropic voxel size of 61 µm was acquired at both sites. The scans 
were acquired at a relative offset to the most proximal slice from the 
reference line; the offset being 4.5 and 7% of the limb length at ra-
dius and tibia, respectively. Due to possible differences in height and 
limb length in these growing children, it was crucial to use a relative 
offset in order to scan the same or similar regions of interest across 
the cohort. This relative offset ensured that the same scan region was 
obtained despite varying limb lengths. Scans were performed using 
the standard manufacturer in vivo imaging protocol [27, 28]. All 
scans were assessed for motion on a scale of 1–5 with 1 indicating 
no motion and 5 indicating significant motion [29], and scans with 
motion scores > 3 were excluded from the analysis (1 radius, 1 tibia). 
Scans were obtained and analyzed by a single qualified technician in 
order to minimize interoperator variability. 

Table 1. Subjects’ characteristics

Control (n = 15) GHD (n = 15) p value

Demographics
Height Z score –0.39±1.0 –2.27±0.61 <0.001*
Tibial length, mm 271.67±27.88 249.33±21.20 <0.001*
Radius length, mm
Age, years

183.28±22.09
7.82±1.32

173.8±16.48
8.85±1.21

0.469
0.035*

Hispanic ethnicity (%) 9 (60) 7 (47) 0.714
BMI %ile 57.27±27.3 38.61±28.21 0.097
25-hydroxyvitamin D, ng/mL 25.62±6.39 22.4±8.36 0.251
IGF-1, ng/mL n/a 140.93±66.57 n/a
Peak growth hormone level, ng/mL n/a 5.62±2.25 n/a

Bone turnover markers
CTX, ng/mL 1.63±0.42 1.72±0.52 0.702
OC, ng/mL 116.61±51.59 98.81±46.36 0.338
PINP, μg/mL 572.87±146.39 489.99±162.36 0.160

DXA
Whole body (subtotal) BMD, g/cm2 0.61±0.06 0.57±0.06 0.088
Whole body BMD Z score 0.14±0.75 –0.29±0.65 0.109
AP spine BMD, g/cm2 0.54±0.07 0.51±0.06 0.255
AP spine BMD Z score 0.15±1.06 0.15±0.84 0.999
1/3 forearm BMD, g/cm2 0.48±0.05 0.46±0.43 0.229
1/3 forearm BMD Z score
R arm area, cm2

0.36±1.37
102.07±12.59

0.11±0.81
95.69±11.70

0.547
0.180

Fat mass, g 6,718.73±2,738.89 5,919.33±2,133.86 0.290
Lean mass, g 17,827.72±3,306.08 15,778.33±2,992.67 0.086
Percent fat 25.71±5.73 26.17±6.38 0.839
Visceral adipose tissue, g 151.33±67.13 146.73±44.29 0.827

Summary statistics for demographics, bone turnover markers, and DXA. Values shown as mean ± SD or  
n (%); p values generated by two-sample t test or χ2 test; * p value <0.05.
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Finite element analysis (FEA) was performed using the HR-
pQCT images to estimate whole bone stiffness (N/mm) and failure 
load (N) [30, 31]. Uniaxial compression was simulated to 1% strain 
using a homogeneous Young’s modulus of 6,829 MPa and Pois-
son’s ratio of 0.3 [32] to estimate stiffness. Failure load (FL) was 
estimated based on the criterion by Pistoia et al. [33]. We used a 
commercial FE solver (FAIM, v7.1; Numerics88, Calgary, AB, 
Canada) on a desktop workstation (Linux CentOS 7.1, 2 × 6-core 
Intel Xenon, 64 GB RAM) to solve the models.

The CV (%) (coefficient of variation) for DXA sites at our cen-
ter is LS (lumbar spine) < 1% FN (femoral neck) < 1.5%, forearm  
< 1%, body composition 1%. For HR-pQCT (XtremeCT II) at our 
center, all density measures are < 1% at both distal radius and tibia, 
microarchitecture < 4.5% at both sites with the exception of Ct.Po 
being < 16% at radius and < 10% at tibia, FEA measures (stiffness 
and FL) < 7% at radius and < 3% at tibia.

Biochemical Assays
Fasting blood samples were obtained and stored for batch anal-

ysis. Serum osteocalcin and C telopeptide were measured by ELI-
SA, and PINP measured by radioimmunoassay, all from Immuno-
diagnostic Systems (Gaithersburg MD). Growth hormone and 
IGF-1 assays were run by IDS-iSYS Specialty Immunoassay Sys-
tem at the Pathology’s Clinical Pharmacology and Toxicology Lab-
oratory at the Irving Institute for Clinical and Translational Re-
search, Columbia University Medical Center (New York, NY, 
USA). 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 were 
measured using ultra-performance liquid chromatography-tan-
dem mass spectrometry by the Biomarkers Core Lab, Irving re-
search Institute for Clinical and Translational Research, Columbia 
University Medical Center (New York, NY, USA).

Statistical Methods
Descriptive statistics were used to summarize participants’ 

characteristics by group: GHD and control subjects. Continuous 
measurements were expressed as mean ± standard deviation or 
median (interquartile range), and differences between the two 
groups were tested using two-sampled t tests or Wilcoxon rank-
sum tests for measurements non-normally distributed. Linear re-
gression models were employed to assess differences in HR-pQCT 
measurements between GHD and control subjects, adjusting for 
age, height standard deviation score, lean mass, and 25-hydroxyvi-
tamin D level. Spearman correlation coefficients were used to 
quantify the strength of association between HR-pQCT parame-
ters and bone turnover markers, GH, and IGF-1 levels, respective-
ly. All statistical tests were two tailed, and p values < 0.05 were con-
sidered statistically significant.

Results

Clinical, Anthropometric, and Biochemical 
Characteristics
Clinical, anthropometric and biochemical parameters 

characterizing our cohort are presented in Table 1. GHD 
prepubertal males were on average 1 year older, and as 
expected significantly shorter than controls (height z score 
in GHD group –2.27 ± 0.61 vs. controls –0.39 ± 1; p < 

0.001). Although GHD subjects were shorter, there was no 
significant difference in limb length of the radius between 
the two groups (p = 0.47). Height differences were due to 
differences in tibial length (p < 0.001) and likely differ-
ences in trunk length (though not measured in this study). 
No significant difference in the BMI percentile was found 
among the groups, with actual BMI ranging between 14.0 
and 19.6 kg/m2 across all participants. GHD prepubertal 
males had IGF-1 z score of –0.23 ± 1.26 and a BA of 7.2 ± 
1.8 (–2.1 standard deviations below the mean for chrono-
logical age) with an annual growth velocity of 4.2 ± 0.55 
cm/year (< 10th percentile for age). All subjects were vita-
min D sufficient. There were no significant differences be-
tween GHD and control groups in absolute values of bone 
formation and resorption markers. 

DXA
No significant differences between the GHD and con-

trol groups were found in bone-projected area at the ra-

Trabecular bone

Cortical bone

a

c d

b

Fig. 1. HRpQCT scan of distal radius in growth hormone-deficient 
(left) and control (right) subjects. a, b A single cross-sectional slice 
of the scan showing the geometry and microstructure of the bone. 
c, d The segmented trabecular and cortical bones.
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dius (“R arm area”), whole body minus head, 1/3 forearm 
or AP spine volumetric BMD or BMD z score. Fat mass, 
lean mass, percent fat, and visceral adipose tissue did not 
differ significantly between the two groups (Table 1). In-
terestingly in GHD subjects, IGF-1 levels had a positive 
correlation with whole-body areal BMD (r = 0.73, p = 
0.003) as well as lean mass (r = 0.76, p = 0.002). As expect-
ed in GHD subjects, peak stimulated growth hormone lev-
els had a negative correlation with percent fat (r = –0.64, 
p = 0.01) and visceral adipose tissue (r = –0.66, p = 0.01).

HR-pQCT Measurements at the Distal Radius and 
Tibia
Bone Geometry and Structure
At the radius, GHD subjects had significantly smaller 

cortical perimeter indicating narrower bones, when com-
pared to controls (Fig. 1). Trabecular cross-sectional area 
was on average 24% smaller, and cortical perimeter was on 

average 12% smaller in GHD subjects compared to con-
trols (p < 0.001) (Table 2). The difference in cortical pe-
rimeter persisted after controlling for height z score, age, 
lean mass, and 25-hydroxyvitamin D level. Regression 
analysis showed that on average, GHD prepubertal males 
had 4.20 mm smaller cortical perimeter (p < 0.05) com-
pared to controls (Table 3). In the GHD group, IGF-1 cor-
related significantly with cortical parameters (cortical 
vBMD, cortical cross-sectional area, and cortical thick-
ness) at the radius with coefficients ranging from r = 0.60 
to 0.80 (all p < 0.05). None of the geometric parameters 
were significantly different between the groups at the tibia.

Volumetric BMD, Microarchitecture, and Estimated 
Bone Strength
No significant differences between the two groups 

were found in total, cortical, or trabecular vBMD or any 
of the microstructure parameters in both the radius and 

Table 2. Summary statistics for HR-PQCT radius.

Control (n = 15) GHD (n = 15) p value

HR-pQCT radius
Total cross-sectional area, mm2 139.18±23.78 109.57±17.89 <0.001*
Cortical perimeter, mm 46.76±3.71 41.18±3.59 <0.001*
Cortical cross-sectional area, mm2 30.24±5.84 27.04±4.99 0.123
Trabecular cross-sectional area, mm2 111.41±24.15 84.74±15.05 <0.001*
Total vBMD, mg HA/cm3 289.67±50.73 297.17±28.5 0.632
Trabecular VBMD, mg HA/cm3 179.3±42.59 164.02±26.51 0.513
Cortical vBMD, mg HA/cm3 695.74±65.41 731.25±26.96 0.076
Trabecular number, 1/mm 1.79±0.26 1.66±0.16 0.110
Trabecular thickness, mm 0.21±0.02 0.21±0.01 0.271
Cortical thickness, mm 0.74±0.16 0.75±0.11 0.721
Cortical porosity 0.01±0.001 0.01±0.001 0.947
Stiffness, N/mm 16,578.79±5,489.55 14,835.87±3,677.58 0.321
Failure load, N 881.79±283.96 778.07±200.75 0.263

HR-pQCT tibia
Total cross sectional area, mm2 524.18±66.20 478.99±81.71 0.124
Cortical perimeter, mm 89.29±6.32 85.33±7.90 0.159
Cortical cross-sectional area, mm2 60.48±14.41 51.59±10.16 0.088
Trabecular cross-sectional area, mm2 468.30±65.22 431.79±74.92 0.184
Total vBMD, mg HA/cm3 259.22±36.01 252.83±29.46 0.609
Trabecular VBMD, mg HA/cm3 206.06±31.48 203.53±29.65 0.475
Cortical vBMD, mg HA/cm3 684.12±33.58 682.07±31.07 0.868
Trabecular number, 1/mm 1.84±0.19 1.81±0.17 0.696
Trabecular thickness, mm 0.24±0.02 0.24±0.02 0.984
Cortical thickness, mm 0.76±0.21 0.67±0.14 0.128
Cortical porosity 0.01±0.01 0.01±0.01 0.580
Stiffness, N/mm 59,011.38±20,135.76 54,980.93±21,664.78 0.616
Failure load, N 3,032.08±935.43 2,625.93±858.27 0.242

Values shown as mean ± SD; p values generated by two-sample t test test; * p value <0.05.
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tibia. Stiffness and failure load as measures of estimated 
bone strength did not differ significantly between the two 
groups (Table 2).

Discussion/Conclusions

This study evaluated prepubertal GHD young boys us-
ing HR-pQCT. The results of our study provide novel in-
sights into the structural characteristics of cortical and 
trabecular bone architecture in prepubertal boys diag-
nosed with GHD using a state-of-the-art technology. 
Standard bone morphology in the skeleton and as ob-
served at the radius and tibia from HR-pQCT scans is 
comprised of trabecular bone surrounded by cortical 
bone with a surrounding periosteum. Our study demon-
strates that GHD prepubertal boys had bones that were 
narrower compared to controls after adjusting for age, 
height z score, lean mass, and 25-hydroxyvitamin D level. 
This was determined by a significantly smaller cortical 
perimeter, indicative of a smaller periosteal boundary. 
Studies have shown that differences in bone size between 
boys and girls likely contribute to differences in fracture 
risk later in life [34, 35], indicating the important role that 
bone size plays. Animal models with GHD have also dem-
onstrated that GHD results in deterioration of bone size, 
microarchitecture, and mechanical properties [36].

In order to eliminate the effect of variation of limb 
length and ensure comparable regions when scanning, a 
relative offset from the reference line was used. This is 

important as bone geometry and microarchitecture vary 
along the length of long bones, with the distal (epiphysis 
and metaphysis) region having a dense mesh of trabecu-
lar network surrounded by a thin cortical shell. Moving 
proximally (towards the diaphysis), the trabecular mesh 
dissipates giving rise to the marrow cavity surrounded by 
a thick cortical shell. Hence, there is a gradient in bone 
properties depending on the scan region. Had a fixed off-
set been used, the differences in scan region would have 
potentially caused differences in density, geometry, and 
microstructure measurements across subjects, thereby 
confounding the actual variation between the GHD and 
control groups. Additionally, although limb length natu-
rally varied between subjects, a difference in length does 
not imply a difference in cross-sectional area. Bones can 
be longer or shorter (axial length of the bone) and nar-
rower or wider (cross section of the bone) with or without 
interdependence [37]. GHD prepubertal boys had a defi-
cit in the cortical perimeter, not a deficit in length. These 
differences in geometry were seen only in the radius, pos-
sibly suggesting an increased tibial sensitivity to weight-
bearing effects (i.e., mechanical loading due to locomo-
tion) when compared with the radius [38], or an increased 
sensitivity of GHD bones to weight bearing compared to 
controls. Absence of differences may also be related to a 
lack of statistical power or some other unknown factor.

The differences in bone geometry that were seen in our 
cohort were not related to differences in lean or fat mass, 
as GHD subjects had similar body composition from 
DXA when compared to controls. No significant differ-
ences in vBMD, microarchitecture, bone strength, DXA 
measurements, body composition, or bone turnover 
markers were seen among the groups.

Animal models of GHD have shown deficits in bone 
geometry and size, and specifically in trabecular microar-
chitecture [36, 39–41]. Early treatment with GH in these 
mice was shown to fully restore trabecular microarchitec-
ture [39] compared to other parameters that may only be 
restored partially. Our study did not find differences in tra-
becular microarchitecture, possibly because these differ-
ences might become more apparent later in puberty [42].

In contrast to our study, some prior studies using DXA 
in children have shown deficits in BMD in this popula-
tion [2, 7–9]. However other studies have shown that 
when appropriate size corrections for body size were 
made, GHD was not associated with a significant decrease 
in BMD [43–47]. As DXA findings are influenced by bone 
size and DXA underestimates BMD when evaluating 
smaller bones, using HR-pQCT measurements allows for 
a more accurate assessment of true vBMD in these chil-

Table 3. Regression analysis results for two different outcomes, 
controlling for height Z score, age, lean mass, and 25-hydroxyvi-
tamin D level

  Estimate Std. error p value

Outcome: cortical perimeter
Intercept 38.79 4.99 <0.0001
GHD (vs. control) –4.21 1.96 0.043
Height Z score 1.85 1.06 0.094
Age 1.70 0.99 0.100
Lean mass –0.0001 0.001 0.724
Vitamin D –0.07 0.08 0.378

Outcome: trabecular cross-sectional area
Intercept 47.21 27.72 0.103
GHD (vs. control) –17.99 10.87 0.112
Height Z score 7.98 5.87 0.188
Age 8.16 5.50 0.152
Lean mass –0.0001 0.002 0.953
Vitamin D 0.192 0.449 0.673
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dren. Unfortunately, there are limited studies evaluating 
BMD using HR-pQCT in children this young, and there-
fore, a true reference range is not available. 

No differences in body composition among the two 
groups were seen, though this is not surprising as altera-
tions in body composition may only be seen in subjects 
with severe growth hormone deficiency [48]. We did how-
ever see associations between body composition, growth 
hormone, and IGF-1 levels. We found that in GHD sub-
jects, lower peak GH levels were associated with increased 
fat mass, a finding supported by multiple studies showing 
that treatment with GH leads to a reduction in fat mass [7, 
12, 49, 50]. We also found that IGF-1 was positively cor-
related with lean mass. Similar correlations between IGF-
1 levels and lean body mass have been shown in pubertal 
girls [51] and children with cystic fibrosis [52]. Interest-
ingly, IGF-1 levels in GHD subjects were also positively 
associated with cortical vBMD and cortical cross-section-
al area, as well as whole-body areal BMD from DXA, sim-
ilar to findings by Yang et al. [21] which showed that IGF-
1 was positively correlated with total vBMD, cortical 
vBMD, and cortical area. These findings support the role 
of IGF-1 in muscle mass formation [53], bone health [54], 
and its role in the acquisition of peak bone mass [55].

The results of this study should be interpreted in the 
light of some limitations. It is a small, observational study 
and is meant to be used to generate further hypotheses in 
the field. It is cross-sectional, thus, associations do not 
prove causation. The diagnosis of GHD in childhood is 
challenging. We based the diagnosis of GHD on auxology, 
radiographic and biochemical data, and clinical judg-
ment, which remain the foundation for the diagnosis. Our 
GHD subjects had a median GH level of 5.62 ng/mL, IGF-
1 level of 140.93 ng/mL (123–275 ng/mL), delayed BA, 
and poor growth velocity. Thus, it is possible that had we 
limited our study to extreme cases of GHD, larger differ-
ences between the groups may have been seen. Interest-
ingly, it has been shown that children with IGF-1 SDS <−2 
did not differ significantly in anthropometric and body 
composition parameters from those with IGF-1 SDS ≥−2, 
suggesting that IGF-1 in young prepubertal children may 
not necessarily be an adequate indication of growth hor-
mone deficiency among children of short stature [48, 56].

Additionally, we studied only prepubertal boys in or-
der to remove any effect of sex hormones, and therefore 
did not take into consideration the strong influence of 
maturation/puberty and other biological determinants of 
bone strength. Additionally, including girls in a future 
study may help evaluate the effect of other factors such as 
sex on pre-pubertal bone health. Our study was also not 

large enough to stratify by ethnicity, which plays a role in 
BMD [24].

Our analysis using HR-pQCT scans was limited to pe-
ripheral sites and may not represent relationships be-
tween GHD and clinically relevant central sites. However, 
distal tibia parameters by HR-pQCT reflect the architec-
ture of the central skeleton (i.e., proximal femur and lum-
bar spine) [57]. 

Despite the above limitations, our study was uniquely 
positioned to examine the influence of GHD on bone 
strength and parameters that underpin bone health in 
prepubertal GHD boys. HR-pQCT scans in young chil-
dren can be technically difficult to perform due to the 
need for children to remain still and positioning prob-
lems secondary to small size. Nonetheless, we had mini-
mal scan loss from motion artifact. The method used for 
supporting subjects with cushions and adding additional 
padding within the limb casts to mitigate limb move-
ment, as well as focusing them with television shows 
worked well. Although children with GHD were found to 
have normal vBMD, HR-pQCT analysis revealed deficits 
in bone geometry that would have been missed by DXA. 
Short stature does not account for these deficits, as our 
findings persisted after controlling for height; limb length 
also does not account for our findings as length of radii 
were not significantly different between the two groups, 
and additionally, the same regions of interest in the radii 
were scanned across both groups. The findings appear to 
be driven primarily by a smaller cortical perimeter.

Clearly, growth hormone deficiency impacts bone size 
starting at a very young age. Larger studies are needed to 
evaluate the extent of these deficits, as well as the need for 
routine bone evaluation in this population. These findings 
lay the groundwork for investigations into the timing of 
earlier growth hormone replacement for prevention of 
these deficits and restoration of bone size, thereby enabling 
accrual of normal peak bone mass during adulthood.
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