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Abstract

P remature adrenarche (PA) has been assumed to be a 
benign variant of normal pubertal development. Yet, 
current collective information suggests associations 

between PA and potential risks for development of 
polycystic ovary syndrome and adult diseases such as the 
metabolic syndrome. Adrenarche refers to the increased 
secretion of the adrenal androgen precursors DHEA, DHEAS, 
and androstenedione, which normally occurs in children 
at age 6-8 years. PA may be identified clinically by early 
pubarche, which is defined as the development of pubic 
or axillary hair before 8 years in girls or 9 years in boys. 
This paper will consider adrenal steroidogenesis, genetic 
markers, neurobiological changes, skeletal maturation, 
and associations with adult disorders. The differential 
diagnosis will be reviewed because PA remains a diagnosis 
of exclusion. Finally, synthesis of current knowledge 
regarding PA, suggestions for evaluation, management, and 
treatment are offered.

Ref: Ped. Endocrinol. Rev. 2018;15(3):244-254
doi: 10.17458/per.vol15.2018.otw.etiologytreatmentadrenarche
Key words: Adrenarche, Pubarche, Adrenal androgens, 
Metabolic syndrome, PCOS, Neuroendocrine
Abbreviations: CYP11A1 (Cytochrome P450 Family 11 
Subfamily A Member 1 or Cholesterol Side-Chain Cleavage 
Enzyme); CYP17A1 (Cytochrome P450 Family 17 Subfamily 
A Member 1 or Steroid 17-Alpha-Hydroxylase); CYP11B1 

(Cytochrome P450 Family 11 Subfamily B Member 1); 
CYP21A2 (Cytochrome P450 Family 21 Subfamily A Member 
2); 3β-HSD (3β-Hydroxysteroid dehydrogenase); HSD17B5 
(17β-Hydroxysteroid dehyodrogenase 5); SRD5A (3-oxo-
5α-steroid 4-dehydrogenase); 11β-HSD2 (Corticosteroid 
11-β-dehydrogenase isozyme 2); AKR1C3  (Aldo-
Keto Reductase Family 1 Member C3); SULT2A1 (DHEA 
Sulfotransferase Family 2A Member 1); POR (Cytochrome 
P450 oxidoreductase)

Introduction

Adrenarche, beginning between 6-8 years of age, is a process 
unique to humans and higher primates (1). Pubarche is the 
physical manifestation of adrenarche. Pubarche is defined 
as the appearance of pubic or axillary hair, which is often 
accompanied by adult apocrine odor, increased oiliness of 
the skin and hair, and acne (2). In the National Health and 
Nutrition Examination Survey (NHANES), the mean ages for 
pubic hair development were 9.5 years for non-Hispanic black 
girls, 10.3 years for Mexican-American girls, and 10.5 years 
for non-Hispanic white girls (3). For boys, mean ages for pubic 
hair development were 11.1 years for non-Hispanic blacks, 
12.3 years for Mexican-Americans, and 12.0 years for non-
Hispanic whites (3). Adrenarche reflects a change in adrenal 
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steroidogenesis with increased secretion of C19 steroids, 
predominantly dehydroepiandrosterone sulfate (DHEAS) 
and DHEA, from the zona reticularis (4). Adrenarche and 
pubarche can occur in individuals with gonadal dysgenesis and 
hypothalamic hypogonadism indicating that adrenarche occurs 
independently of gonadarche (5).

This review will summarize recent developments in the 
study of premature adrenarche (PA) including adrenal 
steroidogenesis, differential diagnosis, genetic associations, 
establishment of the clinical diagnosis, and the potential 
co-morbidities of polycystic ovary syndrome (PCOS) and the 
metabolic syndrome. Approaches to diagnosis and management 
of PA are offered.

Adrenal Steroidogenesis

The adrenal cortex is comprised of three distinct zones. 
The outer zone, the zona glomerulosa (ZG), synthesizes 
mineralocorticoids (4). The middle zone, the zona fasciculata 
(ZF), secretes glucocorticoids (4). The inner zone, the zona 
reticularis (ZR), secretes C19 steroids especially DHEA 
and DHEAS (4). The proteins required for DHEAS synthesis 
include steroidogenic acute regulatory protein (StAR), 
cytochrome P450 cholesterol side chain cleavage (P450scc), 
17α-hydroxylase/17,20 lyase (P450c17), cytochrome P450 
oxidoreductase (P450oxo), cytochrome b5, and DHEA 
sulfotransferase 2A1 (4) (figure 1).

Cholesterol  serves  as  the substrate for  adrenal 
steroidogenesis (4,6). The enzyme, 17α-hydroxylase/17,20-
lyase (P450c17), encoded by the 17α-hydroxylase/17,20 
lyase (CYP17A1) gene, serves as the “gatekeeper” of adrenal 
steroidogenesis. This microsomal enzyme, which is expressed 
in the adrenal cortex and the gonads, has two distinct 
activities: 1. 17α-hydroxylase and 2. 17,20–lyase (7). This 
enzyme is not expressed in the zona glomerulosa resulting 
in the conversion of pregnenolone to mineralocorticoids (4). 
In the zona fasciculata, the 17α-hydroxylase activity 
predominates resulting in glucocorticoid synthesis (4). In 
the zona reticularis, allosteric interactions with cytochrome 
b5 favor the 17,20-lyase activity and production of C19 
steroids (8-10). 

DHEA sulfotransferase 2A1 (SULT2A1) is highly expressed 
in the zona reticularis, where it can sulfate pregnenolone, 
17α-hydroxypregnenolone, and DHEA to their respective 
sulfated products (4). Following sulfation, pregnenolone-
sulfate, 17α-hydroxypregnenolone-sulfate, and DHEAS cannot 
serve as substrates for P450c17 or 3-beta hydroxysteroid 
dehydrogenase type 2 (3βHSD type 2). In addition, they cannot 
act as agonists at steroid hormone receptors (4). It is assumed 
that this metabolic pathway optimizes the flux of the Δ5 
pathway from pregnenolone to DHEAS (11). 

Investigations using liquid chromatography-tandem 
mass spectroscopy (LC-MS/MS) and gas chromatography-
mass spectroscopy (GC-MS) have revealed that the steroid 

Figure 1. Pathway of adrenal steroidogenesis
Blue boxes and arrows show DHEAS pathway, green show cortisol pathway, red show active adrenal androgen pathway, and purple show 11-oxC19 
pathway.
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hormone repertoire of the adrenal cortex is broader than 
traditionally recognized. Additional C19 steroids include 
11-ketoandrostendione (11ketoA4), 11β-hydroxyandrostenedione 
(11OHA4),  11β-hydroxytestosterone (11OHT),  and 
11-ketotestosterone (11ketoT) (8,9). The enzyme cytochrome 
P450 11-β hydroxylase (P450 11B type 1) encoded by CYP11B1 
participates in the synthesis of these 11oxC19 steroids (8). 
Studies of adrenal vein samples have demonstrated that 
11β-hydroxyandrostenedione is the most abundant unconjugated 
C19 adrenal steroid product; ACTH stimulation can enhance its 
production (12). Although the adrenal cortex can synthesize 
11-ketoandrostenedione and 11-ketotestosterone, peripheral 
enzymes such as 11β-hydroxysteroid dehydrogenase 
type 2 (HSD11B2) and aldo-keto reductase 1C3 (AKR1C3/17 
β-hydroxysteroid dehydrogenase type 5) are responsible 
for the conversion of 11β-hydroxyandrostenedione to these 
other steroids (4). Subsequently, 11-ketotestosterone can be 
converted to 11-ketodihydrotestosterone (11KDHT) by peripheral 
5α-reductase activity (8,9) (figure 1).

Androstenedione, DHEA, and DHEAS do not display significant 
agonist activity at the human androgen receptor (4). 
These steroids require additional conversion for biologic 
activity at the androgen or estrogen receptor. In contrast, 
11-ketotestosterone and 11-ketodihydrotesterone are potent 
agonists of the androgen receptor (12,13). The other 11oxC19 
steroids, 11β-hydroxytestosterone, 11-ketoandrostenedione, 
and 11β -hydroxyandrostenedione are less potent androgens 
than 11KT and 11KDHT, but all have demonstrated androgen 
activity in in vitro studies (13-15). Preliminary data suggest 
that the 11oxC19 steroids may play a biologically significant 
role in the clinical signs associated with adrenarche (8,16,17). 
The relative abundance of 11OHA4 in the adrenal gland and 
the potency of its derivatives, 11KT and 11KDHT, suggest that 
11OHA4 is a significantly more important adrenal androgen 
than previously thought (18). 

HPA Axis

The hypothalamic-pituitary-adrenal (HPA) axis primarily 
regulates glucocorticoid secretion by negative feedback 
inhibition limiting the secretion of ACTH (4). ACTH is an 
agonist of the ACTH receptor (MC2R) and has both chronic 
and acute actions (4). Its chronic actions are to maintain 
the transcription and translation of adrenal steroidogenic 
enzymes (4). Acutely, ACTH promotes cortisol secretion. 
While ACTH facilitates the function of the zona glomerulosa, 
aldosterone secretion is primarily regulated by the renin-
angiotensin system and serum potassium concentrations (19). 

Whereas the feedback loops are well characterized for 
glucocorticoid and mineralocorticoid secretion, the existence 
and specific elements of a feedback loop involved in the 

regulation of adrenal androgen secretion remain to be 
elucidated. The absence of adrenarche in patients with 
ACTH receptor mutations and ACTH deficiency imply at 
least a partial regulatory role for ACTH in adrenarche (20). 
Yet, the increasing DHEAS concentrations at adrenarche 
appear to be independent of circulating cortisol and ACTH 
concentrations (21). Despite attempts to identify an adrenal 
androgen stimulating factor, none of the proposed factors have 
withstood rigorous assessment (22).

In a cell culture system utilizing the NCI-H295R human adrenal 
cell line, cortisol was shown to increase DHEA production in 
association with competitive inhibition of 3β-hydroxysteroid 
dehydrogenase type 2 activity (11). In a different experimental 
paradigm using solubilized and liposome-bound preparations of 
purified human 3βHSD2, androstenedione was found to inhibit 
purified 3β-hydroxysteroid dehydrogenase type 2 activity (23). 
Whether these findings are applicable to the normal regulation 
of the human zona reticularis remains to be determined. 

Adrenarche

During fetal life, the fetal adrenal cortex produces DHEAS and 
DHEA, which provide the substrates for placental estrogen 
biosynthesis (4). Following birth, the involution of the fetal 
adrenal cortex is accompanied by a decline in DHEA and 
DHEAS concentrations (4,24). Adrenarche is characterized 
by increased DHEA and DHEAS secretion without significant 
changes in ACTH and cortisol secretion (4,24). Adrenarche 
accompanied by increased DHEA and DHEAS secretion 
is associated with morphological changes in the zona 
reticularis (24-26). These changes include increased expression 
of cytochrome b5 and DHEA sulfotransferase 2A1 whereas 
the expression of 3β-hydroxysteroid dehydrogenase type 2 
decreases (27,28). Although adrenarche has traditionally been 
considered to begin only in late childhood, urinary steroid 
excretion indicates increased urinary androgen metabolites 
reflecting adrenal C19 steroid synthesis begins much earlier 
than 6 years of age (29). Indeed, adrenarche may represent a 
gradual process originating in early childhood (30).

During adrenarche, DHEAS concentrations rise to reach their 
peak during the second decade of life followed by a gradual 
decline (31). DHEAS has the highest concentration of all 
circulating steroid hormones (12), has a longer half-life, and 
shows minimal diurnal variation (32). Yet, the function(s) of 
DHEA and DHEAS remain unclear. These substances do not 
bind to the androgen receptor, but may serve as precursors 
for other sex steroids including estrogen, testosterone, 
11β-hydroxyandrostenedione, and 11β-hydroxytestosterone (8,9). 

Using normal adrenal glands obtained from subjects of 
different chronologic ages, double immunofluorescence 
analysis showed that HSD3B2 expression was largely limited 
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to the ZG and ZF and did not change with increasing age (33). 
The expression of P450c17 increased in the ZF and ZR around 
5 years of age while CYB5A expression markedly rose in the 
ZR with increasing age (33). CYB5A is the gene that codes for 
cytochrome b5, a strong modulator of 17,20-lyase activity. 
These data verify that increasing CYB5A expression in the zona 
reticularis is associated with increased 17,20-lyase activity and 
the onset of adrenarche (34).

The ascending DHEAS concentrations during adrenarche 
are paralleled by rising 5-androstenediol-3-sulfate (Adiol-S) 
concentrations (34). When desulfated, Adiol-S can supply 
precursors for production of more potent androgens such 
as testosterone in skin and liver (28,32). In addition to 
signifying the onset of adrenarche, Adiol-S may serve as a 
precursor for additional sex steroids through peripheral tissue 
conversion (34). 

Differential Diagnosis of Premature 
Pubarche

Based on the mean ages of pubarche in girls and boys, 
premature pubarche is defined as appearance of pubic 
or axillary hair earlier than 8 years of age in girls and 9 
years in boys (3). The differential diagnosis for premature 
pubarche includes PA, mild or non-classical congenital 
adrenal hyperplasia, androgen secreting tumors, rare genetic 
disorders, and exogenous androgen exposure. Gonadotropin-
dependent precocious puberty rarely presents with pubic hair; 
breast development and testicular enlargement are typically 
the initial manifestations. In the absence of a validated 
diagnostic test, PA is a diagnosis of exclusion.

The most common differential diagnosis is congenital 
adrenal hyperplasia (35,36). The virilizing congenital adrenal 
hyperplasias are a group of autosomal recessive disorders 
characterized by defective glucocorticoid biosynthesis 
leading to loss of negative feedback inhibition, increased 
ACTH secretion, and subsequent increased adrenal androgen 
secretion (37,38). The most common form is 21-hydroxylase 
deficiency due to mutations in the 21-hydroxylase 
(CYP21A2) gene (38). The other virilizing CAHs are 3-beta-
hydroxysteroid dehydrogenase deficiency due to HSD3B2 
mutations and 11-beta hydroxylase deficiency due to CYP11B1 
mutations (39,40). All forms manifest a phenotypic spectrum 
reflecting the consequences of the specific mutations. The 
mildest phenotype is called non-classical or late onset. The 
prevalence of non-classical 21-hydroxylase deficiency has been 
estimated to be approximately 1:1000/2000 among European 
Caucasians and 1:100 among Ashkenazi Jews and other middle 
Eastern populations, with lowest rates of 21-hydroxylase 
deficiency among Black patients (41). In contrast, reported 
cases of non-classic CAH due to CYP11B1 and HSD3B2 

mutations are extremely rare (42). Whereas random elevated 
17-hydroxyprogesterone concentrations may confirm the 
diagnosis of non-classical 21-hydroxylase deficiency, obtaining 
an elevated ACTH stimulated 17-OHP value may be necessary 
to confirm the diagnosis of 21-hydroxylase deficiency in some 
patients (35,42).

Several rare genetic disorders are associated with premature 
pubarche. As noted above DHEA is converted to DHEAS by 
the enzyme, SULT2A1 (4). This enzyme requires a sulfate 
donor, PAPS (43). Loss of function mutations in the PAPSS2 
gene have been associated with premature pubarche, 
elevated DHEA concentrations, elevated androgens, and low 
DHEAS concentrations (43,44). Apparent cortisone reductase 
deficiency, due to loss of function mutations in the hexose-
6-phosphate dehydrogenase (H6PD) gene, can also be 
associated with premature pubarche and increased DHEAS, 
androstenedione, and testosterone concentrations (45). The 
H6PD loss of function mutations prevent local conversion 
of cortisone to cortisol resulting in accelerated peripheral 
clearance of cortisol, decreased negative feedback inhibition 
of the HPA axis, and increased ACTH secretion (45). 

Virilizing adrenal or gonadal tumors are rare, but can present 
with premature pubarche and virilization (46,47). Adrenal 
tumors include adrenocortical adenomas, adrenocortical 
carcinomas, bilateral macronodular hyperplasia, and adrenal 
oncocytomas (48). Expression of steroidogenic enzymes 
may be altered in the neoplastic tissue (49). Curiously, an 
androgen and desoxycorticosterone (DOC)-secreting right 
adrenal tumor was identified in a non-Cushingoid 14-year-
old girl who presented with secondary amenorrhea, 
hypertension and virilization; her hormone concentrations 
recapitulated the findings associated with 11β-hydroxylase 
deficiency (50). Removal of the tumor normalized her 
clinical and hormone findings suggesting that the pattern of 
steroidogenesis provoked by the tumor mimicked a secondary 
inhibition of 11β-hydroxylase (50). The tempo of pubertal 
progression is often rapid in patients with androgen secreting 
tumors (47-50). Growth velocity and skeletal maturation 
may be accelerated (48). Tumors in the testis, brain, or 
liver may secrete serum β-human chorionic gonadotropin 
(hCG) that can stimulate testicular LH receptors to produce 
testosterone (51,52). Hence, boys with hCG secreting tumors 
may have testicular enlargement (51,52). Girls generally 
do not present with PA or precocious puberty due to hCG 
secreting tumors because in the absence of FSH estrogens are 
not synthesized. Ovarian sclerosing cell tumors and ovarian sex 
cord stromal tumors can secrete androgens and present with 
premature pubarche or virilization (47,53,54). 

Exogenous androgen exposure from creams or gels containing 
testosterone, DHT or A4 can result in premature pubarche, 
and/or other androgenic signs (55,56). Exogenous steroids can 
be transferred to a patient by direct application, or via skin-
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to-skin contact (55,56). In general, a thorough medical history 
can exclude the possibility of exogenous androgen exposure. 

Central precocious puberty (CPP), also known as GnRH-
dependent precocious puberty, is caused by early reactivation of 
the hypothalamic-pituitary-gonadal axis (57). CPP may present 
with pubic or axillary hair, but is clinically differentiated from 
PA by the presence of breast or testicular development (57). 
As in PA, androgens are elevated for age. Bone age and linear 
growth velocity are usually accelerated (58). In some instances, 
secondary CPP occurs associated with advanced skeletal 
maturation caused by virilizing tumors or untreated congenital 
adrenal hyperplasia (59-61).

PA is a diagnosis of exclusion. In other words, other potential 
etiologies need to be excluded based on medical history, 
clinical findings, or laboratory results (2,35,47). Typically, 
patients present with premature development of pubic 
hair, axillary hair, apocrine body odor, or acne (2,4). 
Characteristically, features of gonadarche are absent (2,62). 
Patients with PA tend to be heavier and taller than their 
peers (2). In a retrospective cohort, girls with PA demonstrated 
greater linear growth and weight gain beginning in early 
childhood (4,63). The age at menarche was found to be slightly 
earlier than expected in Finnish and Catalan girls who had 
presented with PA (64,65). 

Laboratory data typically reveal DHEAS and DHEA 
concentrations consistent with the stage of pubic hair 
development. Decreased IGFBP1 and increased IGF-1 
concentrations have been described in girls with PA (66). 
However, it has been documented that clinical signs of 
adrenarche and pubarche do not always correlate well with 
circulating levels of DHEA, DHEAS, or androstenedione (63,67). 
In these cases, prepubertal intracrine metabolism within 
target tissues is speculated to modulate the clinical 
features (68). Armengaud et al. proposed that an early 
morning basal 17-OHP concentration greater than 200 
ng/dL is 100% sensitive and 99% specific for non-classical 
21-hydroxylase deficiency; these data suggest that early 
morning 17-OHP concentrations less than 200 ng/dl would 
distinguish patients with PA from those with non-classical 
CAH (35).

Advanced Bone Age and Height 
Predictions

PA may be accompanied by advanced skeletal maturation as 
assessed by bone age X-rays. If the bone age is significantly 
advanced, the likelihood of identifying a child with non-
classical CAH is increased (69).

In some studies, patients with PA have been reported to 
have decreased predicted adult heights (70,71). Yet, other 

studies suggest that advanced bone age has minimal effect on 
predicted adult heights in this patient population (64,72,73). 
A larger cross-sectional study showed that although advanced 
bone age was common in PA, the impact on predicted adult 
height appeared to be minor (74). One limitation is that all 
aforementioned cross-sectional studies lack final height data. 
A retrospective review of medical records indicated that 85 
girls with PA achieved adult heights within their mid-parental 
range (75).

Though the exact etiology of the advanced bone age observed 
in some patients with PA remains unclear, many factors 
including insulin, DHEAS, IGF-1, and leptin concentrations as 
well as the rate of weight gain influence the tempo of bone 
maturation. Advanced bone ages are found in approximately 
25% of obese children (76). Obesity appears to have a 
potentiating effect on bone age advancement in children 
with PA (71,77). In a cross-sectional study involving Korean 
children, bone age advancement was positively correlated with 
androstenedione and testosterone concentrations independent 
of BMI (78).

Genetics

In a 1994 twin study, adrenal androgen excretion showed a 
heritability of 58% in prepubertal and pubertal subjects (79). 
Occasionally, premature pubarche can occur without a rise 
in adrenal androgens (80). In these cases, the bone age is 
not advanced, the growth velocity is not accelerated for 
age, and DHEAS concentrations are not elevated (80). It 
has been suggested that these individuals have increased 
androgen receptor sensitivity to low circulating androgen 
concentrations (80). Among a small number of girls (n=25), 
the length of the polyglutamine tract, which is composed of 
a variable number of CAG repeats in the androgen receptor 
(AR/NR3C4) gene, was decreased and methylation of the 
AR gene was decreased (80). These characteristics may be 
associated with increased androgen receptor sensitivity to 
androgens (80). However, no differences in CAG repeat number 
were found among Korean girls with premature pubarche, but 
the mean DHEAS concentration was higher in the premature 
pubarche group compared to the control group indicating that 
some girls likely had PA and not just premature pubarche (81).

The diallelic melanocortin-2 receptor promoter polymorphism 
for the ACTH receptor (MC2R-2 T>C) has been associated with 
PA (82). Children with the MC2R -2 T>C polymorphism had 
higher baseline ACTH, DHEA, and androstenedione levels than 
controls (82). Though the mechanism by which the MC2R-2 T>C 
affects adrenarche remains unclear, this result points toward 
the potential role of ACTH and its receptor in the etiology of PA.

In both Catalan and Caucasian Oxford populations, variation 
at aromatase SNP_50 has been associated with premature 
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pubarche and PCOS (83). Since aromatase catalyzes the 
conversion of androgens to estrogens, this finding may be 
relevant to the etiology of PA and PCOS in girls (83). Genetic 
variations in the aromatase gene have been suggested to 
contribute to androgen excess through impaired conversion of 
androgens to estrogens (83).

Heterozygosity for CYP21A2 mutations has also been associated 
with PA in some populations (84-86). The A G single 
nucleotide polymorphism in the IGF-1 receptor (IGF1R) gene 
has been associated with higher IGF-1 concentrations (87). 
The frequency of this SNP was increased in a small cohort of 
American children with PA (87). In a Finnish cohort, common 
polymorphisms in the POR, SULT2A1, and HSD11B1 genes were 
not associated with PA (88). 

Risk for PCOS

Though previously considered a benign variant of normal 
pubertal development, PA may be associated with an increased 
risk to develop polycystic ovary syndrome (89-99). Studies 
of Catalan girls have shown a 45% incidence of PCOS in 
women who had previously been diagnosed with premature 
pubarche (89). Low birth weight followed by excessive weight 
gain during early childhood has been associated with PA, 
hyperinsulinemia, and central adiposity in some studies (93). 

Several studies investigating the relationships between PA and 
hyperinsulinemic androgen excess have involved a cohort of 
Catalan girls with PA (65,72,73,83,89,93-99). Findings in this 
cohort have included dyslipidemia, increased visceral fat, 
and altered concentrations of inflammatory markers (94). 
In addition, first-degree relatives of these girls have a 
higher risk for impaired glucose tolerance, type 2 diabetes, 
hyperandrogenism, and gestational diabetes mellitus (95). 
In this cohort, hyperinsulinemia was correlated with the 
degree of ovarian hyperandrogenism among the girls who 
developed hyperinsulinemic androgen excess (96). Prenatal 
growth restraint such as intrauterine growth restriction 
followed by rapid postnatal weight gain appear to be 
associated with hyperinsulinemic androgen excess and risk 
for progression to PCOS (97). A recent paper showed that 
children born large for gestational age had lower DHEAS 
concentrations and speculated that early genetic and/or 
epigenetic factors modulated adrenal androgen secretion and 
onset of adrenarche (100).

The estimated incidence of PCOS worldwide is 6-15% (101). 
Women with PCOS have been found to have higher incidence 
of cardiovascular risk factors, including insulin resistance, 
hyperinsulinemia, glucose intolerance, increased abdominal 
adiposity, dyslipidemia, hypertension, and endothelial 
dysfunction (99,102). Since an association has been 
made between PA, adolescent hyperinsulinemic androgen 

excess, and PCOS, metformin treatment has been utilized 
to normalize circulating insulin, IGFBP1, lipids, and leptin 
concentrations (99). However, long term longitudinal studies 
are essential to confirm these initial promising results and 
potentially identify which factors predict progression from PA 
to PCOS (103).

Obesity, Insulin, Metabolic Syndrome 
and Premature Adrenarche

Hyperinsulinemia and/or insulin resistance are common in 
children with PA and may influence the relationship between 
PA and PCOS. Previous studies have demonstrated associations 
between PA, hyperinsulinemia, insulin resistance, and ovarian 
hyperandrogenism (66,72,104). In vitro, IGF-1 and insulin 
potentiate LH-stimulated androgen synthesis in theca-
interstitial cells, suppress SHBG production in hepatoma cell 
lines, and induce steroidogenic enzymes in cultured human 
adrenocortical cells (105-107). PCOS and PA are also both 
associated with decreased IGFBP1 concentrations, which are 
inversely correlated with fasting insulin levels and ACTH-
stimulated adrenal steroid levels (66). Insulin also decreases 
SHBG synthesis resulting in elevated circulating free androgen 
concentrations (108). SHBG concentrations may represent a 
biomarker associated with insulin resistance and increased risk 
for development of type 2 diabetes (109).

The molecular basis of the insulin resistance and 
hyperinsulinemia in PA is likely multi-factorial. Obesity 
generally decreases insulin sensitivity, resulting in compensatory 
hyperinsulinemia to maintain euglycemia (110,111). With 
obesity, one potential mechanism is that adipose tissue lipid 
storage is saturated leading to impaired insulin-suppressed 
lipolysis resulting in increased circulating free fatty acid 
concentrations and ectopic fat storage (110,111). This 
alteration in lipid storage can provoke a shift to a pro-
inflammatory state accompanied by increased peripheral 
insulin resistance and metabolic dysfunction (110,111). In 
addition to obesity, other potential mechanisms for insulin 
resistance include defective post-receptor insulin signaling, 
increased free fatty acids (FFAs), hyperandrogenemia, and 
altered cytokine secretion and action (112).

The metabolic syndrome is defined as a cluster of cardio-
metabolic risk factors that predict the propensity to develop 
type 2 diabetes and cardiovascular disease (113). Although 
several definitions have been delineated for metabolic 
syndrome in children, the presence of metabolic syndrome in 
children and adolescents is associated with an increased risk 
to develop type 2 diabetes in adulthood (114). All available 
definitions of the metabolic syndrome in children include 
components representing obesity (BMI or waist circumference), 
dyslipidemia (high triglycerides and low HDL cholesterol 
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concentrations), elevated blood pressure, and glucose 
metabolism (115). Using a metabolic syndrome severity score 
to account for significant sex- and racial/ethnic differences in 
these components among children, the longitudinal Princeton 
Lipid Cohort Study reported that higher childhood metabolic 
syndrome severity scores were associated with development of 
cardiovascular disease and type 2 diabetes (116). 

Insulin resistance has been described among girls with PA. In a 
homogenous Catalan population, insulin resistance, dyslipidemia, 
increased waist circumference, and increased total fat mass 
were reported in girls with PA (96,99,117). Williams et al. also 
found that androgens were associated with higher triglycerides 
concentrations, greater waist circumference, and higher lean 
mass (90). However, these findings have not been uniformly 
corroborated by other groups (118). 

In a cross-sectional study involving 30 children with PA and 28 
controls, obesity appeared to be the driver of metabolic risk in 
children with PA because metabolic syndrome, as defined by the 
National Cholesterol Education Program Adult Treatment Panel 
III, was only seen in obese patients, whether or not they had 
PA (90). This association between obesity and PA informed on 
the relationship between PA and bone age advancement (77). 
Sopher et al. suggested the possibility of a hormone factor 
which exaggerates the effect of obesity on bone age maturation 
in children with obesity and/or PA (119). Despite comparable 
DHEAS concentrations, increased percent body fat and increased 
occurrence of clinical signs of adrenarche were more common 
among Finnish girls compared to Finnish boys leading to the 
speculation that the sexual dimorphism in the incidence of PA 
could reflect sex-dependent differences in peripheral androgen 
metabolism or action as modified by adipose tissue (120). The 
lack of conclusive data emphasizes the need for further study of 
the possible mechanism(s) linking PA, insulin sensitivity, insulin 
secretion, obesity, dyslipidemia, inflammation, PCOS, and the 
metabolic syndrome.

Neurobiological Development 

Puberty is characterized by changes in physical development, 
hormone concentrat ions,  social  experiences,  and 
neurobiological development. The precise relationship of 
adrenarche and increasing DHEA and DHEAS concentrations to 
neurobiological development is unclear. Although adrenarche 
has been considered to be limited to humans and a few 
non-human primates, detailed investigations demonstrated 
increased DHEA and DHEAS secretion accompanied by 
morphological differentiation of the ZR occur during the first 
few weeks of life in rhesus monkeys (121,122). These studies 
suggest that adrenarche defined as increased DHEA/DHEAS 
secretion and morphological changes in the ZR may occur 
in some Old World primates, but likely during a different 

developmental window (121,122). Thus, it has been suggested 
that this evolution in the timing of adrenarche has led to 
extended brain development in humans associated with 
synaptic pruning (123).

The changes in development and hormone concentrations 
during adrenarche and gonadarche may influence psychosocial 
development. Alternatively, environmental exposures such as 
nutrition and stress may modulate neurobiological maturation. 
A cross-sectional study showed that first generation female 
migrants from Bangladesh had earlier onset of adrenarche than 
second generation girls, native British girls, and girls still living 
in Sylhet, Bangladesh (124). Although attributed to improved 
nutrition and catch-up, the stress of the novel environment 
could be a factor.

Girls with both PA and lower executive functioning had higher 
externalizing and anxiety symptoms (125). Compared to girls 
with “on-time puberty”, some girls with PA have been reported 
to manifest more oppositional, defiant, anxiety, mood, or 
disruptive behavior disorders suggesting a greater vulnerability 
to psychopathology than “on-time” adrenarche girls (126). The 
existence of a developmental track that starts with prenatal 
stress associated with maternal depression and leading to 
elevated childhood cortisol concentrations, PA, and adolescent 
mental health issues has been postulated (127). 

Findings from studies comparing DHEA/DHEAS concentrations 
with brain and pituitary morphology showed a positive 
correlation with cortical thickness in prefrontal areas and 
pituitary volume (128,129). In a longitudinal study involving 
healthy children, the structural development of specific 
subcortical brain regions was found to change during 
puberty (130). Amygdala and hippocampus volume increased 
across puberty whereas the volumes of other structures 
including the nucleus accumbens, caudate, putamen and 
globus pallidus decreased (130). A systemic review concluded 
that, in general, earlier onset of adrenarche and higher DHEA/
DHEAS concentrations were associated with more mental 
health problems (131). Hence, adrenarche represents a 
sensitive period for neurobiological development.

Evaluation and Treatment

Again, PA is a diagnosis of exclusion. Following diagnosis, 
no specific medical treatment is generally necessary. 
Nevertheless, regular clinical re-evaluations are recommended 
to assess linear growth velocity, weight gain, skeletal 
maturation, and progressive androgen excess. To track 
potential progression of androgen excess, adrenal androgen 
levels may be measured annually. After menarche, girls 
with a history of PA may be followed annually. If menstrual 
regularity has not been established two years post-menarche, 
re-evaluation for progression to PCOS may be warranted. 
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Annual fasting measures of insulin resistance, i.e. fasting 
glucose to insulin ratio (FGIR), HgbA1C, or homeostatic model 
assessment of insulin resistance (HOMA), and lipid levels 
may be helpful because of the potential to develop signs and 
symptoms of comorbidities such as the metabolic syndrome. 
If there is evidence of insulin resistance, metformin may 
be recommended. For irregular menses and/or hirsutism, 
treatment with oral contraceptive pills may be beneficial. 
In all cases, adherence to a low-fat, low-glycemic index 
diet and regular exercise is recommended to mitigate risk 
for comorbidities and to promote healthy skeletal growth 
and appropriate pubertal development. Given the potential 
psychological consequences of premature adrenarche and 
abnormal pubertal timing on children, monitoring the physical 
and psychological development of children with premature 
adrenarche will be worthwhile.

Conclusion

The specific physiologic mechanisms instigating the onset of 
increased DHEA and DHEAS secretion by the zona reticularis 
remain to be clarified. Available data support the statement 
that PA is usually a benign maturational phenomenon that 
is a diagnosis of exclusion. Nevertheless, children with 
PA have a higher risk for obesity, impaired carbohydrate 
metabolism, dyslipidemia, advanced skeletal maturation, 
and psychopathology during childhood. Alterations in 
steroidogenesis, neuroendocrine function, insulin sensitivity, 
genetic factors, and environmental exposure likely influence 
the risk for progression from PA to PCOS.
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