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specific fine particulate matter and myocardial 
infarction hospitalizations in New York City
Rachel H. Tao a, Lawrence G. Chillrudb, Yanelli Nunezb,*, Sebastian T. Rowlandb,  
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Introduction
The association between exposure to air pollution and cardio-
vascular outcomes is well established, with increasing evidence 

that fine particulate matter (PM2.5) is particularly harmful.1–3 
Inhalation of PM2.5 can lead to both chronic cardiovascular 
disease and acute events through several biologic pathways, 
including oxidative stress and inflammation, neural reflex arcs 
and autonomic imbalance, increased blood pressure, and trans-
location of inhaled PM2.5 constituents into systemic circulation.4,5 
The relationship between PM2.5 exposure and acute cardiovas-
cular events has been assessed primarily through time-series and 
case-crossover studies.3,6–8 A recent meta-analysis of 26 published 
studies found that each 10 µg/m3 increase in PM2.5 was associated 
with 1.02 times higher risk of myocardial infarction (MI).3

Several studies have explored the relationships between dif-
ferent sources of PM2.5 pollution and cardiovascular hospital 
admissions.9–11 The results of previous studies of cities on the 
East Coast of the United States suggest that PM2.5 from residual 
oil and traffic pollution may be associated with cardiovascular 
hospital admissions.10,11 A study examining source-specific PM2.5 
and cardiovascular hospital admissions across New York State 
(NYS) also found traffic-related PM2.5 to be associated with MI.12 

Background: The association between fine particulate matter (PM2.5) and cardiovascular outcomes is well established. To 
evaluate whether source-specific PM2.5 is differentially associated with cardiovascular disease in New York City (NYC), we identi-
fied PM2.5 sources and examined the association between source-specific PM2.5 exposure and risk of hospitalization for myocardial 
infarction (MI).
Methods: We adapted principal component pursuit (PCP), a dimensionality-reduction technique previously used in computer vision, 
as a novel pattern recognition method for environmental mixtures to apportion speciated PM2.5 to its sources. We used data from 
the NY Department of Health Statewide Planning and Research Cooperative System of daily city-wide counts of MI admissions 
(2007–2015). We examined associations between same-day, lag 1, and lag 2 source-specific PM2.5 exposure and MI admissions in 
a time-series analysis, using a quasi-Poisson regression model adjusting for potential confounders.
Results: We identified four sources of PM2.5 pollution: crustal, salt, traffic, and regional and detected three single-species factors: 
cadmium, chromium, and barium. In adjusted models, we observed a 0.40% (95% confidence interval [CI]: –0.21, 1.01%) increase 
in MI admission rates per 1 μg/m3 increase in traffic PM2.5, a 0.44% (95% CI: –0.04, 0.93%) increase per 1 μg/m3 increase in crustal 
PM2.5, and a 1.34% (95% CI: –0.46, 3.17%) increase per 1 μg/m3 increase in chromium-related PM2.5, on average.
Conclusions: In our NYC study, we identified traffic, crustal dust, and chromium PM2.5 as potentially relevant sources for cardiovas-
cular disease. We also demonstrated the potential utility of PCP as a pattern recognition method for environmental mixtures.

What this study adds
In this study investigating the association between source-spe-
cific fine particulate matter (PM2.5) and myocardial infarction 
hospitalizations in NYC, we demonstrate the potential utility 
of principal component pursuit (PCP) as a pattern recognition 
method for environmental mixtures research. PCP reduces the 
influence of extreme events on identification of consistent pat-
terns, allowing for interpretable source apportionment of PM2.5 
data with minimal subjective decision making by the researcher. 
We also provide an updated analysis of the association between 
specific sources of PM2.5 air pollution and cardiovascular disease 
focusing on NYC during the years 2007–2015.
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To our knowledge, the most recent source-specific analysis of the 
association between PM2.5 and cardiovascular disease specifically 
focusing on NYC was a 2011 paper,10 using 2001–2002 data. 
Since 2002, several policies aimed at improving air quality have 
been implemented on the federal, state, and local levels, including 
those aimed at reducing sulfur emissions from diesel fuel, as well 
as changes in regulations governing electricity generation. These 
changes and others may have changed the contributions of differ-
ent pollution sources in NYC or altered the chemical composition 
of PM2.5 coming from different air pollution sources.

Better understanding which sources of PM2.5 pollution are 
most strongly associated with cardiovascular risk could aid in 
identifying targets for PM2.5 reduction efforts. When assessing 
the effect of simultaneous exposure to multiple environmental 
exposures, researchers often use unsupervised dimensionali-
ty-reduction methods, such as Positive Matrix Factorization 
(PMF), Principal Components Analysis (PCA), or other factor 
analytic approaches, to identify patterns representing underly-
ing pollution sources. When used with environmental mixtures 
data, these dimensionality-reduction approaches can be suscep-
tible to outlying and extreme events, leading to reduced ability 
to find an interpretable solution.

We applied principal component pursuit (PCP) as a pattern 
recognition method to identify sources of PM2.5 pollution using 
speciated PM2.5 data from three NYC locations. PCP is advan-
tageous for use with environmental mixtures data, as it is more 
robust to extreme events than other commonly used dimension-
ality-reduction methods. We examined associations between the 
identified PM2.5 sources and MI admissions in NYC from 2007 to 
2015, leveraging the New York Department of Health Statewide 
Planning and Research Cooperative System (SPARCS) database.

Methods

Study population

Daily hospitalization data for MI in NYC were extracted from 
the SPARCS database13 from 2007 to 2015. We used daily city-
wide counts of acute-care admissions for MI as the dependent 
variable in the health models. The study population consists of 
people who received care for MI in acute-care facilities in NYS 
and resided in NYC.13

Outcome Assessment

MI admissions were identified based on International 
Classification of Diseases 9th Revision (ICD-9) for years before 
2015 and based on International Classification of Diseases 10th 
Revision (ICD-10) for 2015. Admissions were identified as cases 
if ICD-9 code 410.x1 or ICD-10 code I21 occupied one of the 
first four diagnostic positions. We excluded “childbirth” or 
“trauma” admission types. We excluded MI readmissions that 
took place within 2 days of a previous MI admission, for a final 
sample size of 444,295 MI admissions.

Exposure Assessment

Ambient PM2.5 concentrations and its constituents were 
extracted from the Air Quality System (AQS) database main-
tained by the United States Environmental Protection Agency 
(EPA).14 Samples for speciated PM2.5 are collected every third 
or sixth day, and concentrations are reported in micrograms 
per cubic meter (μg/m3). The EPA measures total PM2.5 concen-
tration using gravimetric analysis and chemical constituents of 
PM2.5 using a variety of methods for different chemicals, includ-
ing X-Ray Fluorescence, ion chromatography, and thermal opti-
cal transmittance analysis. AQS places limitations on acceptable 
values for all measurements, which reflect theoretical limits of 
the measurement plus or minus some degree of uncertainty.14

We used data from three locations in NYC: lower Manhattan, 
southern Bronx, and northwestern Queens (Figure S1; http://
links.lww.com/EE/A217). Data collection from the monitors 
used in this study occurred on the same schedule, such that 
scheduled date of data collection for all monitors coincided 
every 3 days. Individual monitors had lapses in data collection, 
so data were not available from all monitors on each observa-
tion day. Data from two separate monitors in lower Manhattan 
were used because they were close in space and did not over-
lap temporally. We used data from these monitor locations to 
compute the daily average concentrations on each of 978 total 
observation days for total PM2.5 and 26 PM2.5 constituents 
across NYC using information from any of the monitors with 
available data. We used average daily concentrations of total 
PM2.5 and the following constituents: aluminum (Al), ammo-
nium (NH4), arsenic (As), barium (Ba), bromine (Br), cadmium 
(Cd), calcium (Ca), chlorine (Cl), elemental carbon (EC), organic 
carbon (OC), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), 
magnesium (Mg), manganese (Mn), nickel (Ni), potassium (K), 
selenium (Se), silicon (Si), sodium (Na), sulfur (S), titanium (Ti), 
nitrate (NO3), vanadium (V), and zinc (Zn).

Covariates

Temperature, pressure, and specific humidity data were 
extracted from the National American Land Data Assimilation 
System, NLDAS-2 Forcing.15 NLDAS reports hourly parameter 
values for 0.125° grids (~11 km × 14 km in NYS). We took 
the average of the 24 hours provided in the NLDAS dataset for 
each day and aggregated daily values for the 0.125° grids to the 
geographic extent of NYC via population-weighted averaging at 
the census tract level.

Statistical analysis

Source apportionment

PCP is a dimensionality-reduction method used primarily in 
computer vision and signal processing applications, that can be 
understood as a robust form of PCA.16 We have adapted PCP to 
be used as an exposure pattern recognition method for environ-
mental mixtures.17 PCP decomposes the exposure matrix into: (1) 
a low-rank matrix containing consistent patterns in the mixture 
and (2) a sparse matrix containing unique or extreme exposure 
events. By separating extreme exposure events from consistent 
patterns of exposure, PCP reduces the influence of extreme events 
on identification of consistent patterns. This approach is there-
fore more robust to extreme events than other pattern recogni-
tion methods, such as PCA or factor analysis alone. In a recent 
study using simulated environmental exposure data, PCP overall 
outperformed PCA in most simulated scenarios; however, when 
noise in the data was high, PCA and PCP performed similarly.17 
When used in computer vision applications, PCP has the addi-
tional advantage of reducing researcher subjectivity by using the-
oretically-optimal, single, universal regularization parameters to 
generate the low-rank matrix.16,18 However, environmental data 
are particularly noisy compared with other PCP applications; we 
found that the default PCP regularization parameters resulted in 
overly low-rank matrices (i.e., ranks 1 or 2 were preferred; but 
we would expect a larger number of sources), and instead applied 
cross-validation to select the hyperparameters.

We used square-root PCP (
√
PCP), an extension of PCP,18 and 

combined it with a separate extension introducing a noncon-
vex penalty on the low-rank matrix.17 We used cross-validation 
to select the optimal rank of the low-rank matrix, which can be 
understood as the number of underlying patterns in the PM2.5 
data. Please see the Supplement for further details on hyperpa-
rameter selection. As in Gibson et al.,17 we used a version of the 
algorithm modified to allow for missing values, to make it possible 
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to include dates with missing measurements of some PM2.5 constit-
uents, and we constrained the low-rank matrix to be nonnegative.

We subsequently applied nonnegative matrix factorization 
(NMF) to the PCP-generated low-rank matrix, to extract chemical 
loadings and factor scores for each observation day. We will refer 
to these chemical loadings and factor scores as PCP-NMF load-
ings and PCP-NMF scores. We identified pollution sources from 
examination of PCP-NMF loadings using a combination of expert 
knowledge and prior literature. Once pollution sources were identi-
fied from PCP-NMF loadings, we estimated daily concentrations of 
source-specific PM2.5. We first regressed daily total PM2.5 concentra-
tion on daily PCP-NMF scores for each identified source, including 
a term for the daily sum of scores from the sparse matrix to account 
for PM2.5 not explained by the identified sources. We then multiplied 
each PCP-NMF score by the regression coefficient of its source in 
the model to compute daily source-specific PM2.5 concentrations.

Time-series health models

Once PM2.5 sources were identified, we conducted a time-series 
analysis using a Poisson regression model and quasi-likelihood 
to account for potential outcome overdispersion. To determine 
which sources were associated with MI as same-day exposures, 
estimated source-specific PM2.5 concentrations for each of the 
identified sources were simultaneously included in the regres-
sion model as predictors. We controlled for the following covari-
ates as potential confounders: nonlinear terms (natural splines) 
for same-day (lag 0) ambient temperature (degrees of freedom,  
df =  4), 3-day average (average lag 1–3) ambient temperature 
(df = 4), same-day relative humidity (df = 4), and 3-day average 
relative humidity (df = 3), day of week indicators, and a natural 
spline term with 36 df (= 4 seasons × 9 years) to account for sea-
sonal and long-term trends. To test for deviations from linearity, 
we ran separate generalized additive models for each PCP-NMF 

factor, where the factor in question was modeled using a penal-
ized spline while controlling for linear terms of all other sources, 
along with all covariates. Quasi Akaike’s Information Criterion 
(qAIC) was used to determine whether each PCP-NMF factor 
should be modeled linearly or nonlinearly in the final model.

Effect estimates are presented as percent changes in MI hospi-
tal admission rates per 1 μg/m3 increase in source-specific PM2.5 
if the associations were linear. If nonlinear, we present the full 
exposure-response curve.

Statistical analyses were conducted using R version 4.0.2 
(2020-06-22),19 the pcpr, NMF,20 and mgcv21 packages.

Sensitivity analyses

In addition to same-day exposure, we also assessed the poten-
tial association between source-specific PM2.5 and MI admission 
rate at lags 1 and 2. In a second sensitivity analysis, we ran 
single-source health models. Finally, to examine the extent to 
which the health effect estimates may be driven by outliers in 
the PCP-NMF scores, we removed values more than 3 standard 
deviations away from the mean of each source and repeated 
analyses as described above. Two hundered fifty-eight observa-
tions were removed in the sensitivity analysis.

Results
During 2007–2015, the daily mean total PM2.5 concentration 
was 10.3 μg/m3 (SD: 6.0), and the daily median number of 
admissions for MI was 135 (IQR: 27) over the 978 observa-
tion days included in our analysis. MI admissions decreased 
overall from 2013 to 2015 and followed a seasonal pattern 
with highest MI rates in the winter (Figure S2, http://links.lww.
com/EE/A217). Average ambient temperature was 12.3°C (SD: 
9.7) (Table  1). Pearson correlation coefficients among PM2.5 

TABLE 1.

Summary Statistics for Daily Number of ED Visits for Myocardial Infarction in NYC (2007–2015), Total PM2.5, PM2.5 Constituents, Daily 
Ambient Temperature and Relative Humidity

 Minimum 25th%ile Median 75th%ile Maximum Mean SD 

Total PM
2.5

 (μg/m3) 1.6 5.9 8.9 13.0 38.6 10.3 6.0
Aluminum (Al) 0.0 7.4 17.0 29.3 309.7 22.5 25.4
Ammonium (NH

4
) 0.0 403.1 815.0 1,435.8 7,260.0 1,119.3 1,040.8

Arsenic (As) 0.0 0.0 0.3 0.8 4.0 0.5 0.6
Barium (Ba) 0.0 0.0 0.0 2.2 52.6 1.9 4.3
Bromine (Br) 0.0 1.7 2.5 4.0 58.5 3.0 2.6
Cadmium (Cd) 0.0 0.0 0.0 2.3 23.0 1.7 3.0
Calcium (Ca) 0.0 30.3 45.5 64.4 765.4 51.7 36.9
Chlorine (Cl) 0.0 4.0 10.0 26.0 1,550.0 36.8 89,0
Chromium (Cr) 0.0 0.3 1.0 2.0 144.8 2.1 7.5
Copper (Cu) 0.0 2.6 3.9 5.7 39.5 4.6 3.4
Elemental Carbon (EC) 80.5 434.9 604.9 823.6 6,170.0 706.9 463.7
Iron (Fe) 9.8 69.6 95.0 130.7 552.8 105.5 53.1
Lead (Pb) 0.0 0.5 1.5 2.7 45.7 2.0 2.4
Magnesium (Mg) 0.0 0.0 3.6 9.3 129.0 7.3 11.7
Manganese (Mn) 0.0 1.0 1.7 2.8 12.9 2.1 1.7
Nickel (Ni) 0.0 1.9 3.5 6.3 44.5 4.9 4.6
Organic Carbon (OC) 566.0 1,775.0 2,465.8 3,348.8 9,990.0 2,706.6 1,270.0
Potassium (K) 0.0 10.0 29.4 52.0 909.7 39.3 58.3
Selenium (Se) 0.0 0.0 0.2 0.5 4.2 0.4 0.6
Silicon (Si) 1.0 32.5 49.1 72.9 686.0 61.3 53.4
Sodium (Na) 0.0 31.5 67.9 125.0 1,185.0 95.1 102.9
Sulfur (S) 47.4 395.0 628.0 986.8 4,828.4 791.3 624.2
Titanium (Ti) 0.0 1.0 2.0 3.3 20.7 2.4 2.2
Nitrate (NO

3
) 97.0 530.1 1,002.3 2,113.1 11,700.0 1,604.1 1,581.9

Vanadium (V) 0.0 0.6 1.7 4.0 26.2 2.9 3.3
Zinc (Zn) 0.0 11.5 19.8 33.4 346.2 25.9 23.0
Temperature (°C) -14.0 4.3 12.7 21.2 31.5 12.3 9.7
Relative Humidity (%) 0.4 0.7 0.8 0.8 1.0 0.7 0.1
MI Counts 10.0 121.0 135.0 148.0 216.0 135.2 196.6

All values without marked units are PM
2.5

 constituents and are reported in ng/m3.
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constituents ranged from –0.1 to 0.9, with highest correlations 
between ammonium and sulfur, ammonium and nitrate, alumi-
num and silicon, chlorine and sodium, magnesium and sodium, 
manganese and nickel, and OC and sulfur (Figure S3, http://
links.lww.com/EE/A217).

Source apportionment

Using cross-validation, we estimated rank r = 7 for the low-rank 
matrix, which we used as the number of expected sources in 
NMF. Four sources of PM2.5 and three single-constituent factors 
were identified based on PCP-NMF loadings: (1) crustal dust, 
(2) salt, (3) traffic, (4) regional, (5) cadmium, (6) chromium, and 
(7) barium. Regional, crustal, and traffic PM2.5 contributed the 
largest approximate proportion of variance (Figure S4, http://
links.lww.com/EE/A217).

We examined the PCP-NMF loadings, along with sea-
sonal, long-term, and weekly patterns in estimated PM2.5 for 

each identified PM2.5 source (Figures 1; Figures S5 and S6; 
http://links.lww.com/EE/A217). The crustal dust source was 
characterized by high levels of silicon, aluminum, and tita-
nium. It was highest in the summer, lowest in the winter, and 
was higher on weekdays than weekends. Salt was primarily 
composed of chlorine, sodium, and magnesium. It did not 
follow a weekly pattern but appeared to be highest in the 
spring, with occasional autumnal and winter peaks. Traffic 
was characterized by high levels of zinc, nickel, nitrate, ele-
mental carbon, calcium, copper, lead, iron, manganese, and 
vanadium. It was highest in winter and on weekdays and 
decreased slightly during the study period. The regional 
source was characterized by high loadings for sulfate, ammo-
nium, organic carbon, and nitrate, along with selenium and 
potassium. It had both summer and winter peaks most years, 
decreased over the study period, and was slightly higher on 
weekends than weekdays (Tables S1 and S2; http://links.lww.
com/EE/A217).

Figure 1. PCP-NMF loadings for chemical constituents of PM2.5. Constituents are listed using chemical formulas or abbreviations.

D
ow

nloaded from
 http://journals.lw

w
.com

/environepidem
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0

hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dgG

j2M
w

lZ
LeI=

 on 03/31/2024

http://links.lww.com/EE/A217
http://links.lww.com/EE/A217
http://links.lww.com/EE/A217
http://links.lww.com/EE/A217
http://links.lww.com/EE/A217
http://links.lww.com/EE/A217
http://links.lww.com/EE/A217


Tao et al. • Environmental Epidemiology (2023) 7:e243 www.environmentalepidemiology.com

5

The latter three factors—cadmium, chromium, and bar-
ium—were each predominantly characterized by a single PM2.5 
constituent (Figure 1). The cadmium factor did not follow a sea-
sonal or weekday pattern. The chromium factor appeared to be 
higher on Fridays than other days of the week but did not differ 
between weekday and weekend days and had two peaks over 
the study period, in autumn 2009 and 2013. The barium factor 
did not have weekday or seasonal trends but appeared to peak 
at the end of 2015 (Tables S1 and S2; http://links.lww.com/EE/
A217).

PCP-NMF scores for each factor over time were not strongly 
correlated with one another—the highest Pearson correlation 
between two factors was 0.4, between traffic and the secondary 
sulfate (Figure S7; http://links.lww.com/EE/A217).

Sparse matrix

Three point six percent (3.6%) of the sparse matrix was pop-
ulated with nonzero elements, representing extreme events that 
could not be explained by the consistent patterns identified in 
the low-rank matrix. Some sparse events were detected for all 
chemical constituents of PM2.5. Notably, we observed sparse 
events for potassium in early July—indicating fireworks—for 
most years and in late December or early January—for New 
Year’s celebrations—for several years (Figure S8; http://links.
lww.com/EE/A217).

Time-series health analysis

For all factors except salt and cadmium, we detected no devia-
tions from linearity based on qAIC. We observed a 0.40% (95% 
CI: –0.21, 1.01%) increase in MI rates per 1 μg/m3 increase 
in same-day traffic PM2.5, a 0.44% (95% CI: –0.04, 0.93%) 
increase in MI rates per 1 μg/m3 increase in same-day crustal 
PM2.5, and a 1.34% (95% CI: –0.46, 3.17%) increase in MI 
rates per 1 μg/m3 increase in same-day chromium-related PM2.5, 
on average, adjusting for confounders (Figure 2). For all other 
factors, the association was null (Table S3; http://links.lww.com/
EE/A217; Figure 2). We present the estimated nonlinear curves 
for salt and cadmium in Figures S9 and S10; http://links.lww.
com/EE/A217.

At lags 1 and 2 with full data, the effect estimates were closer 
to null than at lag 0 for most sources, including traffic, crustal, 

and chromium PM2.5. We observed a 0.14% (95% CI: –0.04, 
0.33%) increase in MI rates per 1 μg/m3 increase in regional 
PM2.5 at lag 1 and a 0.13% (95% CI: –0.05, 0.31%) increase 
at lag 2, whereas the effect was null at lag 0. When outliers 
were removed, we continued to observe a weak positive asso-
ciation between regional PM2.5 and MI at lag 2 (0.23%; 95% 
CI: –0.06, 0.53%) but at lags 0 and 1 the association was null. 
We observed a 0.59% (95% CI: –0.27, 1.45%) increase in MI 
rates per 1 μg/m3 increase in barium PM2.5 at lag 2, whereas the 
effect was null at lags 0 and 1. When outliers were removed, we 
observed a null association between barium and MI admission 
rate at all 3 lags. We observed a 1.01% (95% CI: 0.17, 1.85%) 
increase in MI admission rate per 1 μg/m3 increase in crustal 
PM2.5 at lag 1 with outliers removed (Figure S11; http://links.
lww.com/EE/A217; Tables S3 and S4; http://links.lww.com/EE/
A217).

In single-source models (using full data), a 1 μg/m3 increase 
in crustal dust was associated with a 0.54% (95% CI: 0.09, 
1.00%) increase in MI admission rate and a 1 μg/m3 increase 
in traffic was associated with a 0.59% (95% CI: 0.06, 1.12%) 
increase in MI admission rate, adjusting for all covariates. 
The observed association between same-day chromium and 
MI admission rate in the full model was attenuated in the sin-
gle-source model, where a 1 μg/m3 increase in chromium was 
associated with a 1.16% (95% CI: –0.62, 2.98%) in the sin-
gle-source model (Table S5; http://links.lww.com/EE/A217).

After removing outlying scores larger than 3 SD from the 
mean score for each source, percent change in MI rate per 1 μg/
m3 increase in same-day traffic-related PM2.5 increased to 1.02% 
(95% CI: 0.04, 2.00%). Percent change in MI rate per 1 μg/m3 
increase in same-day crustal dust and chromium-related PM2.5 
decreased to 0.11% (95% CI: –0.73, 0.95%) and –1.01 (95% 
CI: –6.94, 4.28%), respectively. Salt, which had a null associa-
tion with MI in the main analysis, appeared to have a negative 
relationship with MI when outliers were removed (–2.63%; 
95% CI: –5.60, 0.43%) (Figure S12; http://links.lww.com/EE/
A217; Table S4; http://links.lww.com/EE/A217).

Discussion
Using data from EPA’s publicly available AQS database and 
a robust exposure pattern recognition method, we identified 
four sources of PM2.5 and three single-constituent factors in 

Figure 2. Forest plot of percent change in MI admission rates per 1 μg/m3 increase in source-specific PM2.5, adjusting for same-day and 3-day average tem-
perature, same-day and 3-day average relative humidity, day of the week, and seasonal and long-term trends.
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NYC between 2007 and 2015: (1) crustal dust, (2) salt, (3) 
traffic, (4) regional, (5) cadmium, (6) chromium, and (7) bar-
ium. Leveraging data from SPARCS, we observed increased 
rates of MI admissions with increased traffic, crustal dust, 
and chromium PM2.5, but not for same-day salt, regional, 
cadmium, or barium. We observed marginal associations 
between lag 1 and 2 regional PM2.5 and increased MI admis-
sion rates. After removing outliers, we continued to observe 
increased rates of MI admission with increased traffic-related 
and regional PM2.5.

Source apportionment

Crustal dust

Crustal dust, containing high levels of silicon, aluminum, and 
titanium, can come from natural sources such as soil and can 
also mix with suspended road dust and construction dust.10,22,23 
Our results are consistent with other studies, which also found 
higher concentrations of crustal dust during the summer 
months.22

Salt

The salt source had high levels of chlorine, sodium, and mag-
nesium, and appeared to increase in the spring and decrease 
in the autumn. Although some source-apportionment studies 
have identified a similar salt source,11,24 others have identified 
more than one salt component, differentiating between fresh 
and aged sea salt originating from different parts of the United 
States.22,23

Traffic

The traffic source consisted of elemental carbon, nitrate, ammo-
nium, zinc, copper, iron, and lead. PM2.5 from traffic exhaust con-
sists of high levels of elemental and organic carbon, as well as 
ammonium nitrate, iron, copper, and zinc.22,23,25 The presence of 
lead could indicate that particles from road dust also load on this 
factor, as lead, copper, iron, and zinc are commonly used in brake 
lining materials, which contribute to road dust.26 Previous stud-
ies in NYC and other East Coast cities have either identified sep-
arate patterns for PM2.5 from tailpipe emissions and PM2.5 from 
road dust11,23 or a single component representing a mixture of 
emissions exhaust, resuspended road dust, and tire/brake wear.10

PM2.5 concentrations from traffic decreased slightly over the 
course of the study period. Since nitrate is an important con-
stituent of the traffic factor, it is possible that this trend was 
related to reductions in nitrate traffic emissions from policy 
changes that occurred during this time. Relevant policy changes 
include the Tier II Tailpipe NOx Emissions Standard for light-
duty vehicles, implemented between 2004 and 2010, and the 
Clean Heavy-Duty Bus and Truck Rule, which requires all new 
heavy-duty diesel vehicles sold after July 1, 2007, to have parti-
cle control traps and those sold after January 1, 2010, to have 
NOx controls.27

Regional

The regional source was characterized by high levels of sulfate, 
ammonium, nitrate, and organic carbon. From 2007 to 2009, 
this source had a decreasing overall trend with clear summer 
peaks, plateauing after 2009. Sulfate in NYC typically origi-
nates from sulfur dioxide emissions by coal-fired power plants 
in the upper Ohio River Valley.28,29 Our results are consistent 
with other recent PM2.5 source-apportionment analyses in NYS, 
and the overall decrease in regional PM2.5 concentrations since 
2007 is likely attributable to decreased use of coal for power 
generation.23

Single-constituent factors: cadmium, chromium, and 
barium

We detected three single-species PM2.5 sources: cadmium, chro-
mium, and barium. These sources may be related to industrial 
emissions originating from chemical and metal processing, coke 
production, and metal recycling in NYS.23

The chromium and barium factors both appeared to have 
extreme events during the study period, which we might have 
expected to be separated into the sparse matrix instead. This 
result demonstrates that extreme events may appear in the low-
rank matrix if they are consistent with factors detected in the 
low-rank matrix.

Health models

Traffic

We observed that same-day traffic-related PM2.5 was associated 
with an increase in MI admission rates. Traffic-related PM2.5 
has been associated with cardiovascular disease in prior studies, 
and several common constituents of traffic emissions are known 
to be associated with systemic inflammation.10–12,30–32 A source 
apportionment and health analysis using PMF in NYS detected 
an increase in MI admissions rates per IQR increase in spark-ig-
nition emissions but a null association with diesel emissions.12

The observed association between traffic and MI was detected 
in both full and single-source models and remained robust after 
removing outliers. The effect estimate increased when outliers 
were removed, suggesting that the outliers that were removed 
were driving the association downward in the main analysis. 
Since the traffic factor peaked in winter months, this result 
could be attributable to exposure measurement error: traffic-re-
lated PM2.5 levels are highest in the winter, when most people 
are likely to keep their windows closed and spend more time 
indoors, decreasing their exposure to outdoor traffic-related 
PM2.5.

Crustal dust

We observed an increase in MI admission rates associated with 
crustal PM2.5, predominantly composed of silicon and alumi-
num. Silicon as a chemical constituent of PM2.5 has been linked 
to cardiovascular mortality,33,34 and mortality related to PM2.5 
has been found to be modified by increased proportion of alu-
minum.35 Aluminum and silicon as PM2.5 constituents have been 
linked to inflammation and oxidative stress.36 Prior literature 
on the potential association between crustal PM2.5 and cardio-
vascular disease has been mixed, with some studies reporting 
strong and others null associations.10–12,23

Although the observed association between same-day crustal 
dust and MI was detected in both full and single-source models, 
when outliers were removed, the association became null, sug-
gesting that the apparent association detected in the main anal-
ysis may have been driven by outliers. In contrast, at lag 1, we 
observed a positive association between crustal PM2.5 and MI 
admissions with outliers removed, which had not been detected 
at lag 1 with full data. This result suggests that the outliers that 
were removed could have been driving the association toward 
the null at lag 1.

Chromium

We observed an increase in MI admission rates associated with 
same-day chromium PM2.5 in the full model but not the sin-
gle-source model. Though chromium is not generally considered 
to be associated with MI,37 chromium air pollution was found 
to be associated with increased risk for cardiovascular disease 
in a study based in Xi’an, China.38 When extreme outliers were 
removed, the observed association between the chromium 
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source and MI admissions became null, suggesting that the 
apparent association observed in the main analysis may have 
been driven by outliers.

Overall

For all three sources where we observed a positive association 
with MI admission rate, the effect estimate was either com-
parable to or greater than that of total PM2.5 on a per 1 μg/
m3 basis. The point estimates for traffic and crustal dust were 
lower than that of chromium (as well as salt, which appeared 
to have a null association with MI), indicating that chromium 
PM2.5 is likely more toxic for MI. It should be noted, nonethe-
less, that the estimated concentrations of traffic and crustal 
PM2.5 are higher than that of chromium PM2.5 and, therefore, 
the expected overall impact on MI cases is also expected to be 
larger. The overall decrease that we observed in traffic PM2.5 
over the study period, combined with its high toxicity on a per 
μg/m3 basis, suggest that traffic-related policy changes imple-
mented between 2004 and 2010, such as the Tier II Tailpipe 
NOx Emissions Standard and the Clean Heavy-Duty Bus and 
Truck Rule, may have had a positive impact on MI hospital 
admissions since implementation.

Strengths

With PCP, we were able to automatically remove extreme 
exposure events from the low-rank matrix into the sparse 
matrix, rendering the resulting factor analysis of the low-
rank matrix more interpretable. An important example of 
the utility of the sparse matrix is annual fireworks events. 
Fireworks produce high concentrations of potassium ion, 
but usually only produce a discernible signal on festival days, 
such as 4th of July (in the United States) and New Years’ Eve. 
Other dimensionality-reduction methods, such as PCA and 
factor analysis alone, require researchers to manually remove 
observations on the days surrounding these holidays, as these 
annual extreme exposure events can make the solutions dif-
ficult to interpret.10,24 This process places the burden on the 
researcher to decide which extreme observations to remove 
and how to determine criteria for removal. Using PCP, obser-
vations that are not consistent with the patterns within the 
low-rank matrix are automatically separated into the sparse 
matrix. In our analysis, we found that most of the sparse 
events for potassium occurred on or near 4th of July or New 
Years’ Eve, but sparse potassium events did not occur on these 
dates every year, and some sparse potassium events occurred 
on other dates during the year.

Our study had several other strengths, including the 
leveraging of the SPARCS dataset and EPA’s AQS database, 
both of which allowed for a long study. The public avail-
ability of the AQS database also improves reproducibility 
of our source-apportionment analysis, which is available on 
GitHub.

Limitations

Through this analysis, we identified a few limitations to PCP as 
a source-apportionment method for air pollution research. As 
with other dimensionality-reduction techniques, a fully interpre-
table solution for PCP is not guaranteed, and we generated three 
factors that essentially comprised a single PM2.5 constituent 
without being identifiable as specific pollution sources. Some of 
the sources identified, such as chromium, explain a small propor-
tion of total estimated PM2.5 and results for those sources should 
be interpreted with caution. Additionally, it is not possible to 
directly compare the relative variance in total PM2.5 explained 
by the sparse versus low-rank matrix once separated by PCP. 
Although one of PCP’s advantages is that it separates extreme 

exposure events into the sparse matrix, we found that this sep-
aration does not necessarily preclude the existence of extreme 
events within the low-rank matrix, if these outlying events are 
consistent with the long-term pattern detected in the low-rank 
matrix. We found extreme events in both the cadmium and the 
barium sources within the low-rank matrix; we removed these 
potentially outlying events from the health models in sensitiv-
ity analyses. Finally, we found that when applying nonconvex √
PCP to speciated PM2.5 data, it was necessary to tune hyper-

parameters, which is a time-intensive process that comes with 
a certain degree of researcher subjectivity. Other formulations 
of PCP have used theoretically-optimal single universal val-
ues for hyperparameters λ and µ,17,18 but we found that these 
approaches were not flexible enough to detect the underlying 
patterns present in our dataset, as they require a better-defined 
low-rank structure.

Our study had several other limitations, including decreased 
power due to limited sample size. Since data on PM2.5 constitu-
ents were only available once every 3 or 6 days, our final dataset 
included only 978 observation days, despite spanning 9 years. 
Since our models had multiple covariates and nonlinear terms, 
a sample size of 978 may not have allowed for sufficient power 
to detect all associations that were present. Statistical power in 
the sensitivity analysis was further diminished, and the results of 
this analysis should be interpreted with caution. Furthermore, 
the noncontinuous sampling scheme did not allow use of dis-
tributed lag models to more robustly estimate lag-specific 
associations.

Our results are likely subject to exposure measurement error, 
as we did not have speciated PM2.5 data available from all three 
monitors for each day included in analyses. We expect that 
PM2.5 composition varies by geographic location, and we aimed 
to capture the city-wide values by taking the average of values 
measured at three separate locations. However, there were miss-
ing data in the AQS dataset for the Bronx monitor 2011–2014, 
and during most of 2007 for the Manhattan monitor. Our com-
puted city-wide averages on days with missing data may not be 
comparable to computed city-wide averages on days with full 
data.

Conclusions

Applying PCP to speciated PM2.5 data from the EPA’s AQS 
database, and leveraging health outcome data from SPARCS, 
we found increased rates of hospital admissions for MI with 
increased same-day traffic, crustal dust, and chromium PM2.5, 
as well as with lag 1 and 2 regional PM2.5 in NYC from 2007 
to 2015. To our knowledge, this is the first instance of apply-
ing PCP as a dimensionality-reduction method for speciated 
PM2.5 data in an environmental epidemiology study. This 
study demonstrates the potential utility of PCP as a novel 
method for pattern recognition in environmental mixtures 
research.
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