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Abstract: 

Background and Aims: The association between fine particulate matter (PM2.5) air pollution and 

cardiovascular outcomes is well-established. PM2.5 is a heterogeneous mixture of 

chemical constituents and its composition can vary by air pollution source. Different sources of 

PM2.5 can be differentially associated with temperature, depending on the chemical composition 

of PM2.5 produced by different sources and the chemical properties of these underlying chemical 

mixtures. To evaluate whether PM2.5 from certain sources may be differentially associated with 

cardiovascular disease, we examined the association between same-day exposure to source-

specific PM2.5 and risk of hospital admission for myocardial infarction (MI) in New York City 

(NYC) and evaluated potential effect modification by same-day temperature. 

Methods: We applied Absolute Principal Component Analysis to identify sources of 

PM2.5 pollution using data from monitors in three different locations in NYC. We used data 

from the New York Department of Health Statewide Planning and Research Cooperative 

System on daily city-wide counts of MI admissions (2007–2015). We examined associations 

between same day exposure to source-specific PM2.5 and MI admissions in a time-series analysis, 

using a quasi-Poisson regression model and adjusting for same-day temperature and relative 

humidity, lagged 3-day average temperature and relative humidity, day of week, and seasonal 

and long-term time trends. We then assessed for effect modification by temperature by 

categorizing temperature into quartiles; we used interaction terms between source-specific PM2.5 

and the temperature quartiles as indicators in the model. 

Results: We identified six sources of PM2.5 pollution: 1) nitrate, 2) salt, 3) crustal dust, 4) 

secondary/regional sulfate, 5) traffic and road dust, and 6) industrial emissions. In adjusted 

models, we observed a 0.96% (95% confidence interval [CI]: -0.18, 2.11%) increase in MI rates 
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per one interquartile range (IQR) increase in PM2.5 from nitrate sources, a 0.43% (95% CI: -0.13, 

0.99%) increase in MI rates per one IQR increase in crustal PM2.5, and a 0.35% (95% CI: -0.21, 

0.91%) increase in MI rates per one IQR increase in industrial-related PM2.5, on average. We 

observed effect modification by temperature in the crustal PM2.5 – MI association. We observed 

a -0.80% (95% CI: -2.03, 0.45%),  1.10% (95% CI: -0.14, 2.23%), 0.71% (95% CI: -0.45, 

1.79%) change in MI rate per one IQR increase in crustal dust at the lowest, second, and third 

quartile of temperature, respectively; the association between crustal PM2.5 and MI at the highest 

quartile of temperature was null. 

Conclusions: Identifying particularly toxic sources of PM2.5 can maximize efficiency in air 

pollution policies. In our NYC study we identified nitrate, crustal dust, and industrial PM2.5 as 

potentially toxic sources for cardiovascular disease. We also observed non-significant 

differences in effect estimates for the association between crustal dust PM2.5 and MI by quartile 

of temperature, which may be attributable to compositional variation in crustal dust by 

temperature, or exposure measurement error resulting from temperature-related patterns in 

indoor-outdoor ventilation. 
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Introduction 

Globally, ischemic heart disease was the leading cause of death in both 2000 and 2019, 

and is responsible for an increase of more than 2 million deaths over the last two decades (1). An 

estimated 6.67 million deaths worldwide in 2019 were attributable to air pollution, 

approximately half of which were due to cardiovascular disease (2).  

The association between exposure to particulate matter air pollution and cardiovascular 

outcomes is well-established, with increasing evidence that fine particulate matter (PM2.5) is 

particularly harmful (3–5). Inhalation of particulate matter can cause cardiovascular disease 

through several biological pathways, including 1) oxidative stress and inflammation, 2) neural 

reflex arcs and autonomic imbalance, leading to heart rhythm perturbation, 3) increased blood 

pressure, mediated by effects of PM2.5 exposure on systemic vasculature, and 4) translocation of 

inhaled PM2.5 constituents, such as organic compounds or metals, into systemic circulation (6,7) 

(Figure 1). These pathways can lead to both chronic cardiovascular disease and acute 

cardiovascular events (6,7). The relationship between PM2.5 exposure and acute cardiovascular 

events, including hospitalizations and deaths, has been assessed primarily through time-series 

and case-crossover studies (5,8–10). A recent meta-analysis of twenty-six published studies 

found that each 10 𝜇g/m3 increase in PM2.5 was associated with 1.02 times higher risk of 

myocardial infarction (MI) (95% confidence interval [CI]: 1.01, 1.03) (5).  

PM2.5 is a heterogeneous mixture of solid particles and liquid droplets, and its chemical 

composition varies depending on the source of the pollution (11–13). Health effects can therefore 

also vary depending on which sources contribute to PM2.5 pollution in a given region (14–17). 

Better understanding of which sources of PM2.5 pollution are most strongly associated with 
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Figure 1. Biological pathways linking air pollution with cardiovascular disease. 

Mechanisms of cardiovascular disease attributable to air pollution exposures (Adapted from 

Rajesh Vedanthan and Michael Hadley, 2019 in Brauer et al. 2021) 

 

cardiovascular risk could inform local, regional, and national policy by identifying particularly 

toxic sources as targets for PM2.5 reduction efforts. 

Source apportionment is the process of identifying sources of particle pollution using 

particle compositional data. Source apportionment methods usually describe the variability 

among pollutants in terms of unobserved variables derived from dimensionality-reduction 

methods such as Principal Component Analysis (PCA) (18–20). These new variables can be used 

in subsequent health models, such as time-series analyses, to assess the potential association 

between specific sources of pollution and adverse health outcomes (13,14,20). For this study we 
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used Absolute Principal Component Analysis (APCA), an extension of PCA where after 

component scores are calculated, total PM2.5 concentrations are regressed on component scores 

to estimate the contribution of each source (18). The primary difference between APCA and 

PCA is the use of linear regression on component scores to compute daily source concentrations 

in the same units as measured PM2.5 and its chemical constituents. APCA improves 

interpretability by preserving units of measurement and allows for comparison with other source 

apportionment studies, as it has been extensively used in PM2.5 source apportionment analyses 

(13,17,21,22). 

Several studies have explored the relationships between different sources of PM2.5 

pollution and cardiovascular hospital admissions (12,14,17). The results of previous studies of 

cities on the East Coast of the United States suggest that PM2.5 from residual oil and traffic 

pollution may be associated with cardiovascular hospital admissions (14,17). A recent study 

examining source-specific PM2.5 and cardiovascular hospital admissions across New York State 

(NYS) suggested that traffic-related PM2.5 may be associated with MI (23). To our knowledge, 

source-specific analysis of the association between PM2.5 and cardiovascular risk in New York 

City (NYC) has not been conducted since a 2011 paper (14), which used data from 2001-2002. 

Since 2002, several policies aimed at improving air quality have been implemented on the 

federal, state, and local levels, including those aimed at reducing sulfur emissions from diesel 

fuel, as well as changes in the regulations governing electricity generation. Reduction in 

electricity generation from coal-fired power plants has led to decreases in PM2.5 in NYS (24). 

These changes and others may have changed the prevalence of different pollution sources in 

NYC or altered the chemical composition of PM2.5 coming from different air pollution sources. 

Here, we provide an updated analysis of source-specific effects of PM2.5 on risk of 
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cardiovascular events in NYC. By including data from the years 2007 to 2015, we also capture 

long-term time trends that were outside the range of the previous NYC study. 

Different sources of PM2.5 can be differentially associated with temperature, depending 

on the chemical composition of PM2.5 produced by different sources and the chemical properties 

of these underlying chemical mixtures. For example, secondary nitrate has been found to have 

highest concentrations during the colder months because lower temperatures are more favorable 

for ammonium nitrate formation (25,26). Heat exposure is associated with MI (27) and could 

have a synergistic relationship with source-specific PM2.5 and MI. It is therefore important to 

determine whether there is evidence of effect modification by temperature. 

We used APCA to identify sources of PM2.5 pollution using speciated PM2.5 data from 

three locations in NYC (Figure 2). Once sources of PM2.5 were identified, we examined 

associations between sources of PM2.5 and MI admissions in NYC from 2007 to 2015. Identified 

sources were included as the exposure of interest in a time-series analysis using a quasi-Poisson 

regression model with MI admissions as the outcome measure. We a priori expected that traffic-

related PM2.5 would be positively associated with hospitalization due to MI. We aimed to assess 

the association between source-specific PM2.5 and MI using more recent data than the existing 

literature on this topic, by leveraging the New York Department of Health Statewide Planning 

and Research Cooperative System (SPARCS) for data on Emergency Department visits for MI in 

NYC. We also examined the potentially modifying role of temperature in the relationship 

between source-specific PM2.5 and MI. 
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Methods 

Study Population: 

Data source: Daily hospitalization data for MI in NYC were extracted from the SPARCS dataset 

(28). We used daily city-wide counts of MI as the dependent variable. 

The study population consists of people who received care for MI in acute care facilities 

in NYC, 2007-2015. The population of interest for this study is the population of NYC, 2007-

2015, and the SPARCS dataset was used to assess MI in this population. Since the SPARCS data 

represent inpatient and outpatient admissions at acute care facilities, our study population 

excludes 1) those who had MI but were deceased before receiving medical care, 2) those who did 

not seek medical care after experiencing MI symptoms and recovered, 3) those who sought care 

in non-acute care facilities, and 4) those who had MI in NYC but sought care outside of NYC 

(28).  

 

Outcome Assessment: 

MI admissions were identified based on ICD, 9th Revision (ICD-9) for years prior to 2015 

and based on ICD 10th Revision (ICD-10) for 2015. Admissions were identified as cases if ICD-

9 code 410.x1 or ICD-10 code I21 occupied one of the first four diagnostic positions. We 

additionally excluded “childbirth” or “trauma” admission types. Reinfarctions and recurrent MI 

admissions were included, except readmissions that took place within two days after a previous 

MI admission for that patient. Observations with a missing date of admission (n = 1035) were 

excluded for a final sample size of 444,295 MI admissions. 
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Exposure Assessment: 

Data Source: Air pollution data for NYC were extracted from the Air Quality System (AQS) 

dataset collected and maintained by the United States Environmental Protection Agency (EPA) 

(29). This dataset is publicly accessible and includes ambient concentrations of a selection of 

pollutants. Samples for speciated PM2.5 were collected every third or sixth day and 

concentrations are reported in micrograms per cubic meter (μg/m3). 

 

Figure 2. Map of locations of AQS monitors used in this study. Blue dots represent locations of 

each monitor. 

 

From the AQS dataset, we used data from three locations in NYC: lower Manhattan, 

southern Bronx, and Queens (Figure 2). Data from two separate monitors in lower Manhattan 

were used because they were in the same geographic area, and during years when data from one 
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of these monitors were unavailable, data from the other were available. We used data from the 

three monitor locations to compute the daily average values for total PM2.5 and chemical 

constituents of PM2.5 across NYC. Since daily concentrations were not available from all 

monitors for every day included in the dataset, average concentrations were calculated for each 

day from whichever monitors had available data. Inclusion of days where not all monitors had 

available data allowed for computation of city-wide averages during periods when there were 

gaps in data availability for certain monitors (Figure S1). We used average daily concentrations 

of total PM2.5 and the following constituents of PM2.5: aluminum, ammonium, arsenic, barium, 

bromine, calcium, cadmium, elemental carbon, organic carbon, chlorine, chromium, copper, 

iron, lead, magnesium, manganese, nickel, selenium, silicon, sodium, sulfur, titanium, nitrate, 

vanadium, and zinc.  

 

Covariates: 

Data Source: Temperature, pressure, and specific humidity data were extracted from the 

National American Land Data Assimilation System, NLDAS-2 Forcing (30). NLDAS reports 

hourly parameter values for 0.125° grids (~11 km × 14 km in NYS).  

Since the unit of analysis for our study was days, we took the average of the 24 hours 

provided in the NLDAS dataset for each day. Since our analysis was on the city-level, and the 

parameter values from NLDAS are reported in 11 km × 14 km grids, we aggregated daily values 

for each grid to the geographic extent of NYC via population-weighted averaging at the Census 

tract level. To accomplish this, we 1) intersected the census tract-level population data from the 

2010 US Census with the NLDAS grids, 2) calculated weights based on estimated population in 

each intersection and 3) multiplied these weights by the NLDAS daily estimates. We used 
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population-weighting for meteorological variables because these variables are included in the 

final model as potential confounders of the relationship between source-specific PM2.5 and MI, 

so daily estimates should be as reflective as possible of the actual weather experienced by the 

average person in NYC. Relative humidity (RH) was calculated from specific humidity, 

pressure, and temperature. 

 

Statistical Analysis: 

Source apportionment: 

APCA was used to identify patterns among PM2.5 constituents, and a combination of 

expert knowledge and prior literature was used to identify air pollution sources from the 

identified patterns. APCA is an extension of PCA, which estimates new variables (called 

principal components) to explain the total variance using fewer variables than the original 

number. After PCA is conducted, component scores are rescaled relative to a reference of zero 

concentration. To rescale component scores, we first calculated the z-score for a reference day 

for each component by subtracting the mean score of the component from zero and dividing the 

result by the standard deviation of the component scorers. We then subtracted this value from 

each component score, to compute the absolute component score (21). Finally, to estimate the 

mass contribution of each source to chemical constituents of PM2.5 and total PM2.5 concentration, 

we regressed PM2.5 concentrations on absolute component scores (18). We do this so that when 

we assess patterns in each component to identify sources of PM2.5 pollution, we are looking at 

source-specific PM2.5 and its chemical constituents in the same units of measurement that the 

original concentrations were measured in. Preserving units of measurement improves 

interpretability at the point in the process where expert knowledge and prior literature are applied 
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to identify sources from components. Since there is some degree of subjectivity in this source-

identification step, it is important for the inputs to be interpretable, both for improving accuracy 

in source identification and for ease of comparability with other source apportionment studies. 

Once sources are identified from components, each component from APCA (now labeled as a 

source) is evaluated as a predictor in the health model, described in detail below. 

For our analysis, we used average daily concentrations for total PM2.5 and its chemical 

constituents, as described in the Exposure Assessment section, treating each day as an 

observation. To identify sources from the principal components, we examined the mass 

contributions of each component to each of the chemical constituents of PM2.5 and to total PM2.5 

and used a combination of prior literature and expert knowledge to match components to known 

pollution sources. We excluded dates around 4th of July (7/2 – 7/6) for each year as outlying 

events due to increased fireworks during this time, as is commonly done in source apportionment 

studies (12,14).  

 

Time-series health analysis:   

Once sources of PM2.5 were identified, we conducted a time-series analysis using a 

Poisson regression model, using quasi-likelihood to account for potential overdispersion in the 

outcome. To determine which pollution sources are associated with MI, all source contributions 

from the identified sources were simultaneously included in the regression model as predictors. 

To test the linearity assumption of our  model, we modeled each identified source using a 

penalized spline in a generalized additive model, while controlling for linear terms of all other 

sources, along with all covariates. Quasi Akaike’s Information Criterion (qAIC) was used to 

determine whether each source should be modeled linearly or nonlinearly in the final model. We 
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controlled for several covariates as potential confounders associated with both source-specific 

PM2.5 and MI including: nonlinear terms (natural splines) for same-day (lag 0) ambient 

temperature (degrees of freedom, df =3), 3-day average (average lag 1-3) ambient temperature 

(df = 4), same-day relative humidity (df = 4), and 3-day average relative humidity (average lag 

1-3, df = 3), dummy variables for day of the week, and a natural spline for seasonal and long-

term trends (df = 4 × number of years). We separately controlled for same-day and 3-day 

average ambient temperature and relative humidity to account for the effects of both heat and 

cold exposure (27). We assessed potentially nonlinear exposure-response curves using penalized 

splines in generalized additive models. 

To evaluate the potential modifying role of temperature on the association between 

source-specific PM2.5 and MI, we categorized temperature into quartiles, and included interaction 

terms with indicators for the temperature quartiles in the models. We ran separate models for 

each source, which included the main effect for the source, the main effect for same-day 

temperature (modeled non-linearly, df = 3), and an interaction term between the source and 

categorized temperature, controlling for all other sources and covariates. We used partial F-tests 

to test for evidence of effect modification at the 5% level of significance. Effect estimates at each 

quartile of temperature were computed for sources where the partial F-test was statistically 

significant at the 10% level of significance.  

Effect estimates are presented as percent changes in MI hospital admission rate per 

interquartile range (IQR) increase in source-specific PM2.5 if the associations were linear. If 

nonlinear, we present the full exposure-response curve.  

Statistical analyses were conducted using R version 4.0.2 (2020-06-22). Source 

apportionment code can be publicly accessed via https://github.com/12taor/PM2.5_sources. 

https://github.com/12taor/PM2.5_sources
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Sensitivity Analysis: 

To examine the extent to which nonlinearity was attributable to outliers, we removed 

outliers and assessed linearity using penalized splines in a generalized additive model, as in the 

main model. Values that were more than 3 standard deviations away from the mean for each 

source were examined as potential outliers. To evaluate the influence of outliers in linear models, 

we modeled all sources linearly in a single model adjusting for all other sources and all 

covariates, and compared the effect estimates for each source when outliers were and were not 

included. 
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Results 

 During the study period (2007-2015), the daily average total PM2.5 concentration was 

10.32 𝜇𝑔/m3 (SD: 5.97), and the daily median number of admissions for MI was 135 (IQR: 27) 

over the 978 days included in our analysis. MI admissions decreased overall from 2013 to 2015 

and followed a seasonal pattern with highest MI rates tending to occur in the winter (Figure S2). 

Average ambient temperature was 12.33 °C (SD: 9.67) (Table 1). Correlations between PM2.5 

constituents ranged from -0.1 to 0.9, with highest correlations between ammonium and sulfur, 

ammonium and nitrate, aluminum and silicon, chlorine and sodium, magnesium and sodium, 

manganese and nickel, and OC and sulfur (Figure S3).  

 

Table 1. Summary statistics for source-specific PM2.5, total PM2.5 concentration, MI admission 

count, and same-day temperature (°C). Source-specific and total PM2.5 concentration reported in 

𝜇𝑔/m3 (n = 978). 

 

  Min 25th%ile Median 75th%ile Max Mean (SD) 

MI admission count 10 121 135 148 216 135.2 (19.6) 

Nitrate (𝜇𝑔/m3) -1.03 0.11 0.59 1.37 11.11 0.90 (1.20) 

Salt (𝜇𝑔/m3) -0.09 0.02 0.09 0.22 3.84 0.17 (0.28) 

Crustal Dust (𝜇𝑔/m3) -1.52 0.61 1.1 1.71 18.32 1.39 (1.57) 

Secondary Sulfate (𝜇𝑔/m3) -15.00 1.26 2.96 5.88 40.44 4.26 (4.98) 

Traffic + Road dust (𝜇𝑔/m3) -2.07 1.1 1.77 2.49 9.97 1.87 (1.25) 

Industrial (𝜇𝑔/m3) -1.36 0.06 0.12 0.19 2.34 0.13 (0.16) 

Total PM2.5 (𝜇𝑔/m3) 1.62 5.87 8.83 13.03 38.58 10.32 (5.97) 

Same-day temperature (°C) -14.02 4.31 12.67 21.16 31.49 12.33 (9.67) 

 



 18 

Table 2. Left panel: average concentration of each chemical constituent per identified source. Right panel: actual mean concentration of each 

chemical constituent, predicted mean concentration of each chemical constituent using APCA, and percent error of predicted concentrations. All 

concentrations reported in (ng/m3).

Chemical Constituent Nitrate Salt Crustal Dust 

Secondary 

Sulfate 

Traffic + 

Road dust Industrial 

Mean 

Concentration 

Predicted 

Concentration Percent Error 

Aluminum 0.13 0.20 14.69 4.47 5.33 1.68 22.18 26.51 19.51% 

Ammonium 205.57 9.02 153.02 799.87 -154.09 40.46 1120.78 1053.86 -5.97% 

Arsenic 0.07 0.01 0.03 0.15 0.14 0.00 0.49 0.40 -17.98% 

Barium 0.07 0.16 0.52 0.11 2.30 -0.06 1.87 3.10 65.68% 

Bromine 0.51 0.31 0.14 0.92 1.10 -0.32 3.06 2.66 -13.12% 

Cadmium 0.12 -0.07 0.09 -0.07 0.13 -0.17 1.68 0.03 -98.37% 

Calcium 16.07 2.49 13.58 5.46 3.11 0.07 51.85 40.78 -21.35% 

Chlorine 11.45 42.81 -4.87 5.40 5.83 -2.02 37.07 58.58 58.04% 

Chromium 0.50 -0.09 0.32 -0.46 -0.88 3.19 2.13 2.58 20.89% 

Copper 1.07 -0.07 0.63 0.99 2.33 0.69 4.55 5.64 23.87% 

Elemental carbon 145.70 -3.45 98.42 133.30 253.47 68.64 707.73 696.09 -1.64% 

Iron 11.02 -0.32 24.81 13.89 33.86 25.18 105.50 108.45 2.79% 

Lead 0.88 0.04 0.05 0.56 1.16 -0.41 2.02 2.28 13.15% 

Magnesium -0.81 6.30 0.47 -0.02 2.20 -0.30 7.12 7.84 10.22% 

Manganese 0.71 0.01 0.40 0.44 0.34 0.38 2.10 2.28 8.74% 

Nickel 2.49 0.13 0.34 0.78 -1.73 1.55 4.94 3.55 -28.14% 

Nitrate 608.43 101.61 0.31 670.44 103.38 66.42 1613.47 1550.59 -3.90% 

Organic carbon 64.84 -46.27 346.91 800.00 882.38 20.93 2693.20 2068.79 -23.18% 

Potassium 6.59 3.98 2.97 14.05 20.54 -4.98 36.15 43.14 19.34% 

Selenium 0.05 0.01 0.05 0.22 0.01 -0.01 0.40 0.33 -15.71% 

Silicon 3.59 1.09 46.19 8.85 7.53 -3.03 61.01 64.22 5.26% 

Sodium 5.13 59.40 7.82 4.95 -8.24 5.69 95.65 74.77 -21.83% 

Sulfur -20.40 2.28 155.69 477.01 -10.82 10.88 788.05 614.64 -22.01% 

Titanium 0.02 -0.02 1.23 0.44 0.86 0.12 2.37 2.65 11.89% 

Vanadium 0.76 0.11 0.72 1.38 0.33 0.32 2.86 3.61 26.55% 

Zinc 15.40 0.54 -1.79 3.20 7.76 -3.75 26.09 21.36 -18.14% 

Total PM2.5 901.08 170.76 1386.50 4257.78 1867.95 129.58 10322.11 8713.65 -15.58% 
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Source Apportionment 

Six sources of PM2.5 were identified based on average concentration of each chemical 

constituent per absolute principal component: 1) nitrate, 2) salt, 3) crustal dust, 4) 

regional/secondary sulfate, 5) traffic and road dust, and 6) industrial. The component 

characterized by high levels nitrate and ammonium, as well as elemental carbon, nickel, zinc, 

calcium, lead, and manganese, was identified as nitrate from local or regional sources, and 

accounts for 10.34% of total predicted PM2.5. The component primarily composed of chlorine, 

sodium, and magnesium was identified as salt and constituted 1.96% of total PM2.5 

concentration. The component characterized by high levels of silicon and aluminum, along with 

moderately high levels of titanium and calcium, was identified as crustal dust, and accounts for 

15.91% of total predicted PM2.5 concentration. The majority of sulfate appeared to load on a 

single component, which accounted for 48.86% of total PM2.5 and was identified as 

secondary/regional sulfate pollution. This component also included moderately high levels of 

potassium, selenium, organic carbon and vanadium. A component characterized by a diverse 

mixture of organic carbon, barium, lead, nitrate, potassium, copper, zinc, titanium, arsenic, and 

iron was identified as traffic and road dust, and accounted for 21.44% of total PM2.5. A 

component consisting of high levels of chromium, nickel, and iron, as well as copper, elemental 

carbon and vanadium was identified as PM2.5 resulting from industrial emissions. This 

component constituted 1.49% of total PM2.5 (Table 2, Figure S4).  

 Comparing the predicted concentration of each constituent from APCA to the actual 

concentrations, percent error for total PM2.5 was -15.58%. Predicted average cadmium 

concentration should be interpreted with caution, as percent error was -98.37%. Error was also 

greater than 25% for barium (65.68%), chlorine (58.04%), nickel (-28.14%), and vanadium 
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(26.55%) concentrations (Table 2). As expected given orthogonal rotation of APCA components, 

APCA scores for each component were not correlated with one another—the highest correlation 

between two components was 0.13, between the traffic and road dust component and the 

industrial component (Figure S5). The component for regional/secondary sulfate was highly 

correlated with total PM2.5 concentration (r = 0.83). 

 We examined the seasonal, long-term, and weekly patterns in predicted concentration for 

each detected source of PM2.5 (Figs. S6, S7). Nitrate appeared to have higher concentrations on 

weekdays and tended to reach peak concentrations during winter and lowest concentrations 

during summer. Nitrate also appeared to decrease slightly during the study period 2007-2015. 

Salt did not appear to show weekly patterns but seems to have a seasonal cycle with peaks in the 

spring and troughs in the autumn. There were particularly high concentrations of salt in 2014 and 

2015, but otherwise concentrations remained constant over the study period. Other than a plateau 

in 2012, crustal dust concentrations appeared to peak in the summer. Crustal dust does not have 

strong weekly patterns, though weekdays may have slightly higher concentrations than 

weekends. Regional/secondary sulfate decreased over the course of the study period and did not 

follow a clear seasonal or week pattern. Traffic and road dust appeared to increase over the 

course of the study period. Concentrations seemed to increase during the summer and decrease 

during the winter, and concentrations may be slightly higher on weekdays than weekends. 

Industrial PM2.5 showed strong weekly trends, with concentrations higher on weekdays than 

weekends. Industrial PM2.5 concentrations did not appear to have clear seasonal trends and seem 

to have slightly decreased over the course of the study period. 
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Time-series health analysis: 

We observed a 0.96% (95% CI: -0.18, 2.11%) increase in MI rates per one IQR increase 

in PM2.5 from nitrate sources, a 0.43% (95% CI: -0.13, 0.99%) increase in MI rates per one IQR 

increase in crustal PM2.5, and a 0.35% (95% CI: -0.21, 0.91%) increase in MI rates per one IQR 

increase in industrial-related PM2.5, on average, adjusting for covariates (Figure 3). For all other 

sources (salt, regional/secondary, and traffic/road dust), the association was null (Table 3). For 

all sources, qAIC was larger for the model including the non-linear term compared to the linear 

term. Therefore, all sources were included as linear terms in the final model.  

A sensitivity analysis removing outliers confirmed that it was appropriate to model all 

sources as linear terms, as qAIC for the model including all sources as linear terms was less than 

or equal to qAIC for models with each source modeled non-linearly. When the qAIC for the non-

linearly modeled source was equal to the qAIC for the model with all sources linear, the 

estimated degrees of freedom for the penalized spline of the non-linearly modeled source were 

examined. For all sources for which this was the case (salt, crustal dust, traffic/road dust), 

estimated degrees of freedom (edf) = 1.001, and we therefore concluded these sources should be 

modeled linearly. When outliers were removed and all sources were modeled linearly, the 

percent change in MI rate per one IQR increase in crustal dust and industrial PM2.5 increased 

slightly to 0.37% (95%: -0.83, 1.59) and 0.50% (95% CI: -0.67, 1.69), respectively. The point 

estimate for the percent change in MI rate per one IQR increase in nitrate PM2.5 increased from 

0.96% (95% CI: -0.18, 2.11) to 1.79% (95% CI: -0.20, 3.81) (Figure S8). 
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Table 3. Percent change in MI rate for each IQR increase in source-specific PM2.5, adjusting for 

same-day and 3-day average temperature, same-day and 3-day average relative humidity, day of 

the week, and seasonal and long-term trends. 

  

Source Percent change in MI Rate (95% CI) 

Nitrate 0.96 (-0.18, 2.11) 

Salt 0.01 (-0.48, 0.49) 

Crustal Dust 0.43 (-0.13, 0.99) 

Regional/Secondary 0.26 (-0.47, 1.01) 

Traffic + Road Dust 0.07 (-0.90, 1.05) 

Industrial 0.35 (-0.21, 0.91) 

 

 

 

 

Figure 3. Forest plot of percent change in rate of MI admission for an IQR increase in source-

specific PM2.5, adjusting for same-day and 3-day average temperature, same-day and 3-day 

average relative humidity, day of the week, and seasonal and long-term trends. 

 

Based on partial F-tests comparing models with an interaction term to the model with no 

interaction term, none of the interaction terms between source-specific PM2.5 and temperature 

were statistically significant at the 5% level of significance. The interaction term between crustal 
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dust and same-day ambient temperature was statistically significant at the 10% level of statistical 

significance (F3 = 2.0795, p = 0.0991), and effect estimates at each quartile of ambient 

temperature were therefore computed for this source. The percent change in MI rate per one IQR 

increase in crustal dust appeared to be negative for the lowest quartile of ambient temperature at 

-0.80% (95% CI: -2.03, 0.45%), and positive for the second and third temperature quartiles at 

1.10% (-0.14, 2.23%) and 0.71% (-0.47, 1.79%), respectively, though none of these relationships 

were statistically significant at the 5% level of significance (Table 4, Figure 4). The relationship 

between crustal dust and MI admission rate at the highest ambient temperature quartile was null 

(Table 4, Figure 4).  

 

Table 4. Percent change in MI rate for each IQR increase in crustal PM2.5 at each quartile of 

same-day ambient temperature, adjusting all other sources of PM2.5, 3-day average temperature, 

same-day and 3-day average relative humidity, day of the week, and seasonal and long-term 

trends. 

  
Quartile of 

Temperature 

Percent change in MI Rate per IQR 

increase in crustal dust (95% CI) 

0th-25th%ile -0.80 (-2.03, 0.45) 

25th-50th%ile 1.10 (-0.14, 2.23) 

50th-75th%ile 0.71 (-0.47, 1.79) 

75th-100th%ile 0.52 (-2.06, 2.92) 
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Figure 4. Forest plot of percent change in rate of MI admission for an IQR increase in crustal 

PM2.5 at each quartile of same-day ambient temperature, adjusting for all other sources of PM2.5, 

3-day average temperature, same-day and 3-day average relative humidity, day of the week, and 

seasonal and long-term trends.  
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Discussion 

 Using data from the EPA’s publicly available AQS database, we identified six sources of 

PM2.5 pollution: 1) nitrate, 2) salt, 3) crustal dust, 4) secondary/regional sulfate, 5) traffic and 

road dust, and 6) industrial. Leveraging data from SPARCS, we observed increased rates of MI 

admission with increased concentrations of nitrate, crustal dust, and industrial PM2.5, but not for 

salt, secondary/regional sulfate, or traffic/road dust (Table 3, Figure 3). Although the observed 

associations were not statistically significant at the 5% level of significance, we consider these 

associations to be clinically meaningful based on the range of the 95% confidence intervals. Our 

findings were inconsistent with our hypothesis that traffic-related PM2.5 would be positively 

associated with MI admission rate. The relationship between crustal PM2.5 and MI admission 

rates appeared to be negative at the lowest quartile of same-day ambient temperature and positive 

at the middle quartiles of same-day ambient temperature, suggesting that there may be evidence 

of effect modification by temperature (Figure 4). Since the interaction term for crustal dust and 

temperature was only statistically significant at the 10% level of significance, and not the 5% 

level of significance, interaction results should be interpreted with caution. 

 

Source Apportionment: 

Nitrate 

 The nitrate component, which accounts for 10.34% of total PM2.5 concentration, 

primarily consists of nitrate and ammonium, but also includes elemental carbon, as well as 

nickel, zinc, calcium, lead, and manganese (Table 2). Urban ammonium nitrate often originates 

from transported agricultural sources, but can also be the result of local air pollution from traffic 

exhaust (both diesel and gasoline) or garbage and sewage accumulation due to higher population 

density (31–34). The seasonal trends we detected in nitrate concentration are consistent with the 
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chemical properties of the constituents of this source, as ammonium nitrate is thermodynamically 

favored at lower temperatures and higher relative humidity (25,26). Squizzato et al. (2018) found 

that seasonal trends in secondary nitrate were slightly different in Bronx and Manhattan 

compared with other sites in New York state, and suggested that these differences might relate to 

traffic patterns in New York City compared with the rest of New York State (35). Secondary 

nitrate components were detected in two recent PM2.5 source apportionment analyses in New 

York, and in both cases this source accounted for 10-24% of total PM2.5 (19,35).  

 

Salt 

 The salt component had high levels of chlorine, sodium, and magnesium, and appeared to 

increase in the spring and decrease in the autumn (Table 2, Figure S7). Other recent source 

apportionment studies have identified more than one salt component, differentiating between 

fresh and aged sea salt (19,35). In an NYC-based study, Masiol et al. (2017) identified coastal 

areas in the northeastern US as the potential geographic origin for their fresh sea salt component, 

and coastal areas in the southeastern US as the potential origin of their aged sea salt component 

(19). The seasonal patterns we detected in PM2.5 from sea salt may therefore represent weather 

patterns from across the East Coast of the US. 

 

Crustal Dust 

 The crustal dust component, accounting for 15.91% of total PM2.5 concentration, was 

characterized by high levels of silicon and aluminum, and also included relatively high levels of 

titanium and calcium. Crustal dust can come from natural sources such as soil, and can also mix 

with suspended road dust and construction dust (14,19,35). Our results are consistent with other 

studies, which also found higher concentrations of crustal dust during the summer months (19). 
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 We qualitatively observed a change in the seasonal pattern of crustal dust concentrations 

during 2011-2013 (Figure S7), which coincided partially with the 2011-2014 period during 

which speciated PM2.5 data were unavailable at the Bronx monitor (Figure S1). It is possible that 

reliance on speciated PM2.5 data from the Queens and Manhattan monitors during this period led 

to measurement error in our source apportionment analysis, resulting in altered seasonal patterns 

in crustal dust when data from the Bronx monitor were missing. 

 

Secondary Sulfate 

 Secondary sulfate, which accounted for 48.86% of total PM2.5 concentration, was 

characterized by high levels of sulfate, ammonium, and organic carbon (Table 2). From 2007-

2012, secondary sulfate has a decreasing overall trend with clear summer peaks, which becomes 

less discernible after 2012 when levels of secondary sulfate reach a plateau. Sulfate typically 

originates from SO2 emissions by coal-fired power plants in the upper Ohio River Valley 

(36,37). Our results are consistent with other recent PM2.5 source apportionment analyses in New 

York, and the overall decrease in secondary sulfate concentrations since 2007 is likely 

attributable to decreased use of coal for power generation (35). 

 

Traffic and Road Dust 

 PM2.5 from traffic and road dust loaded on a single component accounting for 21.44% of 

total PM2.5, which consisted of organic carbon, elemental carbon, barium, lead, nitrate, 

potassium, copper, zinc, titanium, arsenic, and iron (Table 2). PM2.5 from traffic exhaust tends to 

consist of high levels of elemental and organic carbon, as well as ammonium nitrate, iron, 

copper, and zinc (19,31,35). Given that ammonium was not present in our traffic component 

(though nitrate was), it is possible that there was some admixture with the nitrate component, 
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which included high levels of both ammonium and nitrate, as well as moderately high levels of 

elemental and organic carbon. Road dust consists of a mixture of particles from road wear, brake 

and tire wear, and particles deposited on or near roads from other sources (38,39). Iron, copper, 

lead, barium and zinc, all of which load highly on this component, are commonly used in brake 

lining materials, which likely contribute to road dust (39). Though previous studies have 

identified separate patterns for PM2.5 from tailpipe emissions and PM2.5 from road dust (17,35), 

here both appeared to load on a single component. In a source apportionment analysis of NYC 

using speciated PM2.5 data from a single monitor in midtown Manhattan, Lall et al. (2011) also 

found a single component representing what appeared to be a mixture of emissions exhaust, re-

suspended road dust and tire/brake wear (14).  

 PM2.5 concentrations from traffic and road dust appeared to increase over the course of 

the study period (Figure S7). This trend is consistent with patterns in registered vehicles in New 

York City during the period from 2007-2015. There was a steady increase in registered vehicles 

in New York, Bronx, and Queens counties from 2011-2016, preceded by a drop in registered 

vehicles from 2008-2011 in New York county (vehicle registration remained constant in Bronx 

and Queens counties during the 2008-2011 period) (35). 

 

Industrial 

 Industrial PM2.5 consisted of high levels of chromium, nickel, and iron, as well as copper, 

elemental carbon and vanadium (Table 2). Concentrations were higher on weekdays than 

weekends and seem to have slightly decreased over the study period (Figs. S6, S7). Our 

industrial component was similar to that identified in Squizzato et al. (2018), which included 

lead, iron, manganese, copper, and zinc (35). Industrial emissions likely originate from chemical 

and metal processing, coke production, and metal recycling in New York State (35). 
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Other Sources 

We expected to detect residual heating oil as a distinct source of PM2.5 air pollution, but 

none of the components from our analysis were consistent with chemical patterns associated with 

this source. Residual heating oil was identified as a source of PM2.5 in both of the most recent 

source apportionment analyses in New York, and also has been identified as an established 

source of PM2.5 in previous studies of urban centers in the East Coast region of the US 

(14,17,19,35). Typically this source consists primarily of nickel and vanadium, and can also 

include sulfur, manganese, and zinc (19). Residual heating oil is of interest because it has been 

found to be associated with cardiovascular outcomes, and is considered to be particularly toxic 

due to high nickel content (40). Nickel had a prediction error of -28.14% and vanadium had a 

prediction error of 26.55% in APCA, both among the highest prediction errors for chemical 

constituents (Table 2). Although based on prior literature, residual heating oil is likely to be 

present as a source of PM2.5 in New York City, our analysis may not have been accurate enough 

for these key markers of residual heating oil to capture it as a distinct source. Since PM2.5 from 

residual heating oil comes from buildings that use residual heating oil boilers, which tend to be 

localized in particular neighborhoods (Upper East Side, northern Manhattan, and southern 

Bronx), not all of which are close to AQS monitors, it is possible that the signal for this source 

was diluted in our city-wide analysis using average concentrations of speciated PM2.5 across 

locations.  

 

Health Model: 

Nitrate 

 We observed a 0.96% (95% CI: -0.17, 2.11%) increase in MI rates per one IQR increase 

in same-day PM2.5 from nitrate sources, and the percent change increased to 1.79% (95% CI: -
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0.20, 3.81%) when outliers were removed. Our results are consistent with other studies, which 

have linked exposure to nitrate as a constituent of PM2.5 to all-cause and cardiovascular mortality 

(23,41,42). Although Ostro et al. (2007) did not find a statistically significant association 

between nitrate and cardiovascular mortality at lag 0, they did observe a 1.5% (95% CI: -0.2, 

3.3%) per IQR increase in cardiovascular mortality at lag 3 (41). Cao et al. (2012) found positive 

associations between nitrate and cardiovascular mortality at lags 0-3, and also found a positive 

association between ammonium and cardiovascular mortality at lags 0 and 1. In a NYS-based 

study, Rich et al. (2019) found a 0.5% (95% CI: -0.1, 1.1%) increase in same-day acute 

cardiovascular admission rate with each IQR increase in secondary nitrate PM2.5, as well as a 

1.7% (95% CI: 0.4, 3.0%) increase for lags 0-3 in a source apportionment analysis using Positive 

Matrix Factorization (PMF), another commonly used source apportionment algorithm. They 

suggested that secondary nitrate might be a surrogate for advection of condensed reactive 

oxidative species (ROS) by locally formed nitrate particles, as ammonium nitrate is a particle on 

which carbonaceous species can condense (23). Since exposure to reactive oxidative species can 

lead to oxidative stress (43), a pathway by which PM2.5 pollution can cause cardiovascular 

disease, advection of condensed ROS may be a mechanism by which nitrate PM2.5 could be 

associated with MI. 

The increase in the effect estimate for the association between nitrate and MI rate after 

removing outliers suggests that the outliers that were removed were driving the association 

downward in the main analysis. Given the mixture of local and regional sources that can coexist 

within the nitrate PM2.5 source, it is possible that the chemical composition of the nitrate source 

on days when nitrate concentration was particularly high or particularly low differed slightly 

from the chemical composition on days with nitrate concentrations closer to the mean. If future 
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source apportionment analyses detect more than one compositionally distinct source of nitrate 

from PM2.5, it would be interesting to determine if one nitrate-related source is more associated 

with MI than another. 

 

Crustal Dust 

 We observed a 0.43% (95% CI: -0.13, 0.99%) increase in MI admission rates per one 

IQR increase in crustal PM2.5, which is predominantly composed of silicon and aluminum. 

Silicon as a chemical constituent of PM2.5 has been linked to cardiovascular mortality, and could 

therefore contribute to the observed association (44,45). Mortality related to PM2.5 has also been 

found to be modified by increased proportion of aluminum, a key constituent of crustal dust (46). 

Aluminum and silicon together as chemical constituents of PM2.5 have also been linked to 

inflammation and oxidative stress (47). Prior literature on the potential association between 

crustal PM2.5 and cardiovascular disease has been mixed. In a Boston-based study, 

Kioumourtzoglou et al. (2014) found that crustal dust was strongly associated with hospital 

admissions for cardiovascular disease when APCA was used for source apportionment analysis, 

but not when PMF was used (17). An NYC-based study using data from 2001 found no 

association between their equivalent component (soil) and cardiovascular admissions (14). On 

the other hand, an NYS source apportionment study identified a road dust component that had 

similar composition to our crustal dust component (35), and in the subsequent health analysis 

this component was associated with a 0.8% (95% CI: 0.0, 1.7%) increase in same-day hospital 

admission rates for MI (23). 

 The association between crustal dust and MI admission rate appears to be negative at the 

lowest quartile of temperature and positive at the middle quartiles of temperature (Figure 4). 

These results should be interpreted with caution, as the interaction term between crustal dust 
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PM2.5 and temperature was only statistically significant at the 10% level of significance, and not 

the 5% level of significance. However, we choose to report these findings because it is likely that 

we had reduced ability to detect statistically significant interactions due to insufficient statistical 

power, and the associations we were able to detect at the 10% level of significance may be 

informative for future studies with larger sample sizes. Our results are consistent with previous 

studies which have found most positive effect estimates for the association between total PM2.5 

and mortality at moderate temperatures (46). 

There are several potential mechanisms that could lead to differences in the effect of 

crustal dust on MI rate at different temperatures, including seasonal changes in crustal dust 

composition and exposure measurement error related to infiltration of outdoor pollutants indoors 

at different ambient temperatures (46). Chemical composition of crustal PM2.5 may vary 

seasonally, as a function of prevailing winds and the geographic origin of PM2.5. Masiol et al. 

(2017) found that increased crustal material concentrations in NYC were associated with 

moderate winds from the south, and that concentrations were highest in the spring and summer 

(19). Transported crustal material related to southern winds may have slightly different 

composition and therefore different toxicity compared with crustal dust originating from other 

areas. Crustal dust mixed with construction or road dust also likely has a different chemical 

composition than crustal dust from soil, and the degree to which the crustal dust source detected 

here includes other dust sources may vary seasonally. Temperature-related variation in 

ventilation likely plays a role in measurement of the effect of PM2.5 on MI, as people are most 

likely to keep their windows open while indoors at moderate temperatures and least likely to 

keep their windows open at extreme cold and warm temperatures. In a nationwide study of total 

PM2.5 and selected PM2.5 constituents, Franklin et al. (2008) found that effect estimates for the 
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association between total PM2.5 and overall mortality were highest at moderate temperatures and 

lowest at cold and warm temperatures—the authors used this finding to argue that temperature 

can be used as a surrogate for ventilation (46).  

The apparent protective effect of crustal dust PM2.5 at low temperatures is unexpected.  

One possible, though somewhat unlikely, explanation for our result may be residual confounding 

from effects of wind. Wind speed can be associated with risk of MI (48), and also could be 

associated with source-specific PM2.5. If at low temperatures, high wind speed is positively 

associated with MI and negatively associated with crustal dust, this could lead to an apparent 

protective effect of crustal dust at low temperatures, without necessarily reflecting a true 

protective effect. Perhaps high wind velocity at low temperatures contributes to wind chill, 

worsening the experience of cold at high wind velocities and therefore contributing to increased 

cold-induced coronary vasoconstriction and subsequent MI (48). If cold-weather winds in NYC 

tend to originate from a direction that carries less crustal dust, and the composition of crustal 

dust from this direction makes it non-toxic, these pathways could lead to a negative association 

between crustal dust and MI, through windspeed as a backdoor path. 

 

Industrial 

 We observed a 0.35% (95% CI: -0.21, 0.91%) increase in MI hospital admission rate per 

one IQR increase in industrial PM2.5. The industrial component contains high levels of nickel, 

which has been associated with cardiovascular disease in several studies, and is considered to be 

a chemical constituent of PM2.5 of particular concern for health outcomes (49,50). Several of the 

other chemical constituents of industrial PM2.5, including zinc, chromium, and lead, were also 

found in a study based in Xi’an, China to be associated with increased risk for cardiovascular 
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disease (50). Previous New York based studies have not found evidence of an association 

between industrial PM2.5 and MI or cardiovascular disease hospital admissions (14,23). 

 

Traffic and Road Dust 

 Although we expected to find an association between traffic-related PM2.5 and MI 

hospital admission rate, we did not find evidence of this association. Traffic-related PM2.5 has 

been associated with cardiovascular disease in prior source apportionment studies, and several 

common chemical constituents of traffic emissions are known to be associated with systemic 

inflammation, a biological pathway by which PM2.5 can be associated with MI 

(14,17,23,49,51,52). Over the course of our study period, there were several policy changes 

aimed at reducing the toxicity of traffic-related air pollution, including the requirement for NOx 

control for heavy-duty diesel trucks and buses (2010) and the requirement in NYS that all 

distillate fuels sold in NYS be ultralow sulfur by July 1, 2012 (35). It is possible that previously-

recorded associations between traffic-related PM2.5 and cardiovascular disease have been 

reduced as a result of these policy changes, rendering them undetectable in our analysis. Of note, 

Rich et al. (2019) detected a 2.3% (95% CI: 0.1, 4.5%) increase in MI hospital admission rate per 

IQR increase in spark-ignition emissions, a 0.4% (95% CI: -0.5, 1.2%) increase in MI hospital 

admission rate per IQR increase in diesel, and a 0.8% (95% CI: 0.0, 1.7%) increase in MI 

hospital admission rate per IQR increase in road dust (23). It is possible that policy changes 

aimed at reducing the toxicity of diesel fuel for buses were particularly effective in NYC, as 

public transportation may account for a particularly large proportion of traffic-related PM2.5 air 

pollution in NYC. However, it is also important to note that since Rich et al. were using data 

from the entire population of NYS, they likely had more statistical power to detect changes in MI 

rates from spark-ignition emissions and road dust that may have appeared null in our analysis.  
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Secondary Sulfate 

 We did not find evidence of an association between secondary sulfate and MI hospital 

admission rate. We might have expected to find an association, since sulfate as a constituent of 

PM2.5 has previously been found to be associated with MI and overall cardiovascular disease 

(44,53,54). However, secondary sulfate as an identified source of PM2.5 from source 

apportionment analysis has not consistently been associated with cardiovascular hospital 

admissions (14,23). 

 

Strengths: 

 This study had several strengths, including the leveraging of the SPARCS dataset, 

reproducibility of source apportionment analysis, and examination of interaction by temperature. 

The SPARCS dataset and the EPA’s AQS database allowed for a long study period during which 

it was possible to detect long-term trends. The public availability of the AQS database also 

improves reproducibility of our source apportionment analysis, which is available on GitHub. 

We also were able to examine potential effect modification by temperature, using an easily 

interpretable method: quantile indicator terms. 

 

Limitations: 

 This study also had several limitations, including decreased power due to limited sample 

size and exposure measurement error. Since data on PM2.5 constituents were only available once 

every 3 or 6 days, our final dataset included only 978 days, despite spanning 9 years. Since our 

models had multiple covariates, non-linear terms, and interaction terms, a sample size of 978 

may not have allowed for sufficient power to detect all associations that were present. Lack of 

daily speciated PM2.5 data also prevented examination of exposure windows of interest other 
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than same-day exposure to source-specific PM2.5. Several studies have found evidence of 

associations between source-specific PM2.5 and cardiovascular disease at lag 1 or lag 2 for 

sources where no association was detectable at lag 0, so it would have been useful to be able to 

examine exposure windows other than same-day exposure (14,17). 

Our results are likely subject to exposure measurement error, as we did not have 

speciated PM2.5 data available from all three monitors for each day included in the dataset. We 

expect that PM2.5 sources, and consequently the concentrations of PM2.5 and its chemical 

constituents, vary at different geographic locations within NYC, and we aimed to capture the 

city-wide values by taking the average of values measured at three separate locations. However, 

from 2011-2014 there were missing data in the AQS dataset for the Bronx monitor, and for most 

of 2007 there were missing data for the Manhattan monitor (Figure S1). Our computed city-wide 

averages on days with missing data only represent the values at the locations with available data, 

and therefore may not be comparable to computed city-wide averages on days with full data. 

This could have influenced our source apportionment solution as it may have influenced the 

correlations among city-wide averaged constituents over time. In a source apportionment 

analysis using PM2.5 chemical constituent data from the same AQS dataset as the current study, 

Squizzato et al. (2018) found that the same sources were identifiable at the Queens, Bronx, and 

Manhattan locations, but source contributions differed by site (35). Their results suggest that 

aggregating all available data on days where data were missing from one or more monitors could 

lead to biased estimates for city-wide daily contributions of source-specific PM2.5.  

For these missing data to result in differential error in effect estimates for the health 

analysis, there would need to be bias not only in the predicted concentration of each source, but 

also in toxicity. For example, Squizzato et al. (2018) found that concentrations for secondary 
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nitrate were lowest at the Queens site and highest at the Manhattan site (35). If the composition 

of PM2.5 from secondary nitrate is identical across NYC, but has different concentrations in 

different areas, these differences are not necessarily a cause for concern in our effect estimates 

for MI. However, if secondary nitrate were higher in Manhattan because of a local source of 

nitrate that had a slightly different composition from regional sources of nitrate and was 

therefore more toxic, this could mean that our effect estimates were biased away from the null—

this hypothetical local Manhattan source would be more influential in our health analysis when 

data from the Bronx site are not available, and would overestimate the degree which PM2.5 from 

secondary nitrate is associated with MI for the average person in NYC. This is a completely 

hypothetical example, not based on any known local toxic sources of nitrate in Manhattan 

compared with the Bronx, and similar examples could be considered for other identified sources. 

Missing data could lead to bias either toward or away from the null depending on the existence 

of a toxic local source near a monitoring site with missing data or a site with complete data. 

Future studies should explore improved practices for handling missing data to account for 

geographic variation in PM2.5 chemical constituents. Such methods might include simulation 

models for PM2.5 constituents, similar to those used in the EPA’s Community Multiscale Air 

Quality Model (CMAQ). Since these kinds of models rely on the availability of air quality data 

from monitors, development of such approaches would need to be accompanied by increased 

availability of speciated PM2.5 data at air quality monitors. Increased number of monitors 

tracking speciated PM2.5 and use of simulation models for estimating exposure to chemical 

constituents of PM2.5 could also allow for population-weighted averaging for PM2.5 constituents, 

and therefore source-specific PM2.5. If speciated PM2.5 simulation models with sufficiently high 
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geographic accuracy were available, population-weighted averaging using gridded surfaces 

would reduce exposure measurement error for health analyses. 

Other sources of measurement error include outdoor versus indoor exposure, as well as 

interpretation issues in source apportionment analysis. We did not account for differences 

between outdoor and indoor exposure to source-specific PM2.5 and used only data from outdoor 

monitors, even though most people spend the majority of their time indoors and are therefore 

primarily exposed to indoor air. We also were not able to identify all key sources of PM2.5 and 

did not have complete separation for all sources examined. This limitation stems from more 

general limitations of APCA and other dimensionality-reduction methods for source 

apportionment, which include issues with interpretability, as well as subjectivity in detecting 

patterns that are identifiable as sources of PM2.5. Finally, our results may not be generalizable to 

other locations, which may be characterized by a different mixture of PM2.5 pollution sources.  

 

Conclusions: 

Leveraging data from SPARCS and from the EPA’s AQS database, we found non-

significant increased rates of hospital admissions for MI with increased same-day nitrate, crustal 

dust, and industrial PM2.5 in NYC from 2007-2015. We observed a non-significant negative 

association between crustal dust and MI admissions rate at low temperatures and a non-

significant positive association between crustal dust at moderate temperatures. Continued 

assessment of effect modification by temperature in studies examining the relationship between 

source-specific PM2.5 and cardiovascular outcomes is warranted. Exposure measurement error 

from temperature-dependent changes in ventilation may have a meaningful effect on effect 
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estimates for health outcomes with certain sources of PM2.5 and should be taken into account 

more regularly in source apportionment health studies.
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Supplemental Figures and Tables 

 

Figure S1. Data availability at each monitor, and for the full aggregated dataset used in the main 

analysis.  

 

Figure S2. Seasonal and long-term trends for MI admission count 
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Figure S3. Correlation matrix for chemical constituents of PM2.5 

 

 

Figure S4. Contributions of each source to total PM2.5 concentration. 1) nitrate, 2) salt, 3) crustal 

dust, 4) secondary/regional sulfate, 5) traffic and road dust, 6) industrial 
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Figure S5. Correlation matrix for each identified source from APCA, compared with actual total 

PM2.5 concentration. 

 

 

 

Figure S6. Mean source-specific PM2.5 (𝜇𝑔/m3) per day of week. 
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Figure S7. Seasonal and long-term trends for each source, reported in 𝜇𝑔/m3 

 

Figure S8. Forest plot comparing percent change in MI admission rate per IQR change in 

source-specific PM2.5 using full data (blue circles as point values) and estimates when outliers 

more than 3SD from the mean are excluded (orange triangles as point values)  
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SUPPLEMENTAL MATERIALS 

 

S1. Structured Thesis Plan 

S1a. Narrative* 

* Some elements of the thesis plan have changed since it was originally written 

 
Title: Assessing the effect of air pollution on hospitalization due to myocardial infarction using novel 

source apportionment methods 

 

Student: Rachel Tao, Applied Biostatistics 

 

Introduction 

 The association between exposure to air pollution and cardiovascular outcomes is well-

established, with increasing evidence that fine particulate matter (PM2.5) may be particularly harmful (1). 

Better understanding of which sources of PM2.5 pollution are most associated with cardiovascular risk in 

specific areas could inform local policy on efforts to reduce PM2.5 pollution.   

Source apportionment is the process of identifying sources of pollution from pollution data. 

Source apportionment methods usually describe the variability among pollutants in terms of unobserved 

variables derived from dimensionality-reduction methods such as Principal Components Analysis (2–4) 

These new variables can be used in subsequent analyses, such as time-series models, to assess the 

potential association between specific sources of pollution and health outcomes (4–6). All existing source 

apportionment methods require some degree of subjective decision-making with respect to selecting how 

many potential sources to include in the final model, so novel methods that reduce this subjectivity are 

needed (4). Principal Component Pursuit (PCP) is a developing method for source apportionment that 

would reduce the degree of subjectivity for selecting sources (see methods). 

To our knowledge, source apportionment analysis of the association between fine particulate 

matter and cardiovascular risk in New York City has not been done since 2011(6), using data from 2001-

2002. For the current project, we plan to provide an update to this previous analysis, and compare 

previously used source apportionment methods, Positive Matrix Factorization (PMF) and Absolute 

Principal Component Analysis (APCA), with our novel method, PCP. 

 

Study Aims 

Aim 1: Apply PCP to identify PM2.5 sources in New York City. Compare PCP with previously used 

source apportionment methods, Positive Matrix Factorization (EPA) and/or Absolute Principal 

Component Analysis. 

Aim 2: Identify sources of PM2.5 pollution using PCP and investigate the association with hospitalization 

due to myocardial infarction. 

 

Hypotheses 

We expect the same pollution sources to be identified using PMF, APCA, and PCP source apportionment 

methods, and that the time trends of a given identified source (e.g., traffic) will be correlated across the 

different methods. We will perform time-series analyses with hospitalization due to MI as the outcome, 

and factors/components identified as pollution sources as predictors of interest. We expect the following 

sources of PM2.5 to be positively associated with hospitalization due to myocardial infarction: traffic and 

residual oil. We will test for effect modification by temperature, and expect that the relationship between 

PM2.5 and myocardial infarction will be stronger at higher temperatures. 

 

Methods 

Air pollution data: 
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Air pollution data for New York City have been extracted from the Air Quality System (AQS) dataset 

collected and maintained by the United States Environmental Protection Agency (7). This dataset is 

publicly accessible and includes ambient concentrations of a selection of certain pollutants. We will use 

daily concentrations of total PM2.5 and the following chemical components of PM2.5: aluminum, arsenic, 

bromine, calcium, chlorine, chromium, copper, iron, lead, magnesium, manganese, nickel, selenium, 

silicon, sulfur, titanium, nitrates, vanadium, and zinc. 

 

Meteorological data will be extracted from the National Oceanic and Atmospheric Administration 

(NOAA) National Climatic Data Center (8), and we will use the values from the monitor in Central Park 

for temperature and humidity. 

 

Hospitalization data: 

Daily hospitalization data for myocardial infarction in New York City has been extracted from the 

Statewide Planning and Research Cooperative System dataset. I will use daily city-wide counts of 

myocardial infarctions. Because this dataset is not considered human subjects, this project does not 

require IRB approval. I have been given permission to use these data by Drs. Boehme and 

Kioumourtzoglou. 

 

Source apportionment: 

Two previously used approaches (PMF, APCA) and one novel approach (PCP) to source apportionment 

will be used. All three methods will describe variability among the observed PM2.5 components in terms 

of unobserved variables, which may be referred to as factors or components depending on the method. 

Expert knowledge will be used to assign factors/components to sources of PM2.5 (e.g., traffic, residual 

heating oil). 

 

Positive Matrix Factorization (PMF) is a source apportionment method developed by the US EPA (9), 

which takes into account the uncertainty associated with each observation and imposes the restriction that 

all chemical component contributions are non-negative. For PMF, the number of expected factors (i.e., 

number of sources) must be provided a priori. We will use expert knowledge to determine how many 

sources of PM2.5 we should expect and perform PMF using the EPA’s software. We will use loadings on 

factors to determine if the sources we expected to see are indeed present, and then use factors identifiable 

as specific sources in the time-series health analysis (10). 

 

Absolute Principal Component Analysis (APCA) is an extension of Principal Components Analysis, 

which creates new unobserved variables called components or principal components to explain the total 

variance in fewer variables than the original number. In PCA, principal components are uncorrelated 

with, or orthogonal to, one another. For both PCA and APCA, it is necessary to either specify a priori to 

only select principal components that together account for more than a certain proportion of the total 

variance (e.g. > 80%) or visualize the results to determine an appropriate cut-off point (11). After PCA is 

conducted, APCA will involve rotating the principal components determined from PCA and rescaling the 

component scores relative to a reference of zero pollution, so that total PM2.5 mass concentrations can be 

regressed on the component scores (2). 

 

Principal Component Pursuit (PCP) is a novel method used primarily in computer vision applications, 

such as face recognition, that can be understood as a robust form of Principal Components Analysis (12). 

PCP is in the process of being adapted as a method of source apportionment. Although expert knowledge 

provides us with reasonable estimates for the number of sources to expect, it would be preferable to use a 

method that allows for identification of potential PM2.5 sources without specifying the expected number 

of sources or total proportion of variance explained a priori. PCP aims to deconstruct the data matrix into 

a low-rank matrix, which we can use to identify distinct patterns in the data such as pollution sources, and 

a sparse matrix, which includes unique events that cannot be explained by the identified consistent 
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patterns. Once fully adapted for use in environmental epidemiology, principal components from the low-

rank matrix that explain a non-zero percent of the total variance will be considered signals of potential 

sources of PM2.5. I work with Dr. Marianthi-Anna Kioumourtzoglou as part of the multidisciplinary 

development team adapting PCP to environmental epidemiology applications. To identify sources, we 

will examine the loadings of each of the chemical components of PM2.5 on each principal component and 

use expert knowledge to identify sources from the principal components.  

 

Time-series health analysis:   
Once sources of PM2.5 have been identified, we will conduct a time-series analysis using a Poisson 

regression model, which will control for temperature, humidity, day of the week, season, and long-term 

trends. To determine which pollution sources are associated with MI, each factor or component identified 

as a pollution source using source apportionment analysis will be included in the regression model as a 

predictor. We will create separate models using the sources identified by each source apportionment 

method (APCA, PMF, and PCP). 

 

Temperature and humidity will be included in the model as a combined measure (either apparent 

temperature or wet bulb temperature), which will be an indicator of temperature as it is perceived by 

humans. Combining these measures will also allow for assessment of potential effect modification 

without necessitating the inclusion of multiple interaction terms in the model. 

 

To compare source apportionment methods, we will compare time trends for each identified air pollution 

source across source apportionment methods. For example, if the component from APCA identified as 

traffic is higher on weekdays, we expect that the component from PCP identified as traffic will also be 

higher on weekdays. We will examine the correlations between components/factors identified as the same 

air pollution source by different source apportionment methods over temporal patterns, including 

weekdays/weekends and season. 
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S2. Quasi-Systematic Literature Review 

 

Author (pub. 

year/data 

years) Title Journal 

Population 

of interest / 

Sample 

characteristi

cs Location 

Study 

design 

Statistical 

methods 

Outcome 

measure(s) 

Exposure(s

) Covariates Major findings 

GBD 2019 

Risk Factors 

Collaborators 

(2019/1990-

2019) 

Global burden 

of Global 

burden of 87 

risk factors in 

204 countries 

and territories, 

1990–2019: a 

systematic 

analysis for the 

Global Burden 

of Disease 

Study 2019 Lancet 

global 

population 

internation

al 

meta-

analysis 

Bayesian 

meta-

regression 

methods 

mortality, 

years of life 

lost, years of 

life lived with 

disability, 

disability-

adjusted life-

years 

87 risk 

factors and 

combinatio

ns of risk 

factors   

6.67M global 

deaths 

attributable to air 

pollution 

Hoek et al. 

2013 

Long-term air 

pollution 

exposure and 

cardio-

respiratory 

mortality: a 

review 

Environment

al Health N/A USA 

meta-

analysis N/A 

all-cause, 

cardiovascular, 

and respiratory 

mortality PM2.5 

smoking, 

sex, 

education 

(BMI, 

diabetes, 

road traffic 

noise) 

 identify relevant 

covariates 

- spatial issues 

- period issues 

Liu et al. 2019 

Ambient 

Particulate Air 

Pollution and 

Daily 

Mortality in 

652 Cities NEJM global USA 

meta-

analysis 

overdispers

ed 

generalized 

additive 

models 

with 

random-

effects 

meta-

analysis 

all-cause 

mortality, 

cardiovascular 

mortality, 

respiratory 

mortality 

PM2.5, 

PM10   

independent 

associations 

between short-

term exposure to 

PM10 and PM2.5 

and daily all-

cause, 

cardiovascular, 

and respiratory 

mortality 



 57 

Farhadi et al. 

2020 

Association 

between 

PM2.5 and 

risk of 

hospitalization 

for myocardial 

infarction: a 

systematic 

review and a 

meta-analysis 

BMC Public 

Health global global 

meta-

analysis I^2 

MI 

hospitalization PM2.5   

there is an 

association 

between PM2.5 

and MI 

hospitalization 

Brook et al. 

2010 

(American 

Heart 

Association) 

Particulate 

matter air 

pollution and 

cardiovascular 

disease: an 

update to the 

scientific 

statement from 

the American 

Heart 

Association Circulation N/A USA review N/A 

cardiovascular 

disease PM2.5   

exposure to 

PM2.5 over a few 

hours to weeks 

can trigger 

cardiovascular 

disease-related 

events, longer-

term exposure 

increases risk for 

cardiovascular 

mortality, 

reductions in PM 

levels are 

associated with 

decreases in 

cardiovascular 

mortality within a 

time frame as 

short as a few 

years 

Newby et al. 

(2015) 

Expert 

position paper 

on air 

pollution and 

cardiovascular 

disease  

European 

Heart 

Journal N/A 

internation

al review N/A 

cardiovascular 

disease 

air 

pollution   

Biological 

mechanisms for 

effects of air 

pollution on 

cardiovascular 

disease include 
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Ambient 

PM2.5 and 

risk of 

emergency 

room visits for 

myocardial 

infarction: 

impact of 

regional 

PM2.5 

oxidative 

potential: a 

case-crossover 

study 

Environment

al Health 

population 

of Ontario, 

CA 

16 cities 

in Ontario, 

CA 

case-

crossover 

conditional 

logistic 

regression 

MI 

hospitalization 

regional 

PM2.5 

oxidative 

potential 

regional PM2.5 

oxidative 

potential may 

modify the 

relationship 

between PM2.5 

and MI 

Dai et al. 

(2014/2000-

2006) 

Associations 

of Fine 

Particulate 

Matter Species 

with Mortality 

in the United 

States: A 

Multicity 

Time-Series 

Analysis 

Environment

al Health 

Perspectives 

population 

of US 

75 US 

cities time-series 

Poisson 

regression 

all-cause, 

cardiovascular, 

MI, stroke, and 

respiratory 

mortality 

speciated 

PM2.5 

infiltration 

rate, county-

level 

smoking, 

alcohol 

increased risk of 

mortality with 

PM2.5, varies by 

season and 

species 

Davoodabadi 

et al. 

(2019/2010-

2012) 

Correlation 

between air 

pollution and 

hospitalization 

due to 

myocardial 

infarction 

ARYA 

Atherosclero

sis MI patients 

Isfahan, 

Iran 

case-

crossover 

conditional 

logistic 

regression 

MI 

hospitalization 

PM10, 

PM2.5, 

NO2, SO2, 

CO, O3 

temperature, 

windspeed, 

humidity 

elevated PM2.5 

48 hours before 

admission 

Thurston et al. 

(2011/2000-

2005) 

A source 

apportionment 

of U.S. fine 

particulate 

matter air 

pollution 

Atmos 

Environ N/A USA 

source 

apportionme

nt 

factor 

analysis, 

APCA N/A 

speciated 

PM2.5   

Identified metals 

industry, 

crustal/soil 

particles, traffic, 

steel industry, 

coal combustion, 

oil combustion, 

salt and biomass 

burning sources 
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Ito et al. 

(2004/2001-

2002) 

Spatial 

variation of 

PM2.5 

chemical 

species and 

source-

apportioned 

mass 

concentrations 

in New York 

City 

Atmos 

Environ N/A NYC 

source 

apportionme

nt APCA N/A 

speciated 

PM2.5   

sources: 

secondary 

aerosols, soil, 

traffic-related, 

residual oil 

Hopke et al. 

(1976/1970) 

The use of 

multivariate 

analysis to 

identify 

sources of 

selected 

elements in the 

Boston urban 

aerosol 

Atmos 

Environ N/A Boston 

source 

apportionme

nt 

factor 

analysis N/A 

speciated 

PM2.5   

sources: crustal 

dust, sea salt, 

residual fuel 

burning, traffic, 

refuse 

incineration 

Lall et al. 

(2011/2001-

2002) 

Distributed 

Lag Analyses 

of Daily 

Hospital 

Admissions 

and Source-

Apportioned 

Fine Particle 

Air Pollution 

Environment

al Health 

Perspectives adults 65+ NYC time-series 

distributed-

lag GLM, 

PMF 

all-cause, 

respiratory and 

cardiovascular 

Medicare 

admissions 

source-

specific 

PM2.5 

same-day 

and lagged 

temperature 

and relative 

humidity, 

season, 

winter flu, 

day of week 

traffic-related 

PM2.5 associated 

with CVD 

admissions 

Wurth et al. 

(2018/2004-

2012) 

Fine particle 

sources and 

cognitive 

function in an 

older Puerto 

Rican cohort 

in Greater 

Boston 

Environment

al 

Epidemiolog

y 

older Puerto 

Rican 

adults Boston 

longitudinal 

study 

linear 

mixed 

model with 

random 

intercept 

cognitive 

function PM2.5 

age, sex, 

season, 

physical 

activity, 

education, 

income-to-

poverty 

ratio 

long term 

exposures to BC 

and nickel, 

tracers of traffic 

and oil 

combustion 

associated with 

decreased 

cognitive 

function 
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Hopke et al. 

(2006/1995-

1998) 

PM source 

apportionment 

and health 

effects: 1. 

Intercompariso

n of source 

apportionment 

results 

Journal of 

Exposure 

Science and 

Environment

al 

Epidemiolog

y N/A 

Washingto

n DC, 

Phoenix, 

AZ 

source 

apportionme

nt 

PCA, 

Unmix, 

PMF N/A 

speciated 

PM2.5   

overall good 

agreement 

between 

statistical 

methods, less 

good correlation 

with respect to 

different traffic-

related 

components 

Kioumourtzogl

ou M-A, et al. 

(2014/2003-

2010) 

The impact of 

source 

contribution 

uncertainty on 

the effects of 

source-specific 

PM2.5 on 

hospital 

admissions: A 

case study in 

Boston, MA 

Journal of 

Exposure 

Science and 

Environment

al 

Epidemiolog

y 

Medicare 

enrollees 

Boston, 

MA 

case-

crossover 

using time-

stratified 

approach 

PMF, 

APCA, 

time-series 

CVD hospital 

admissions 

source-

specific 

PM2.5 

same-day 

temp, same-

day dew 

point, 2-day 

moving 

average 

temp, 

PM2.5 

short-term assoc 

with mobile and 

regional, long-

term assoc with 

residual oil 

Thurston and 

Spengler 

(1985) 

A quantitative 

assessment of 

source 

contributions 

to inhalable 

particulate 

matter 

pollution in 

metropolitan 

Boston 

Atmospheric 

Environment N/A Boston 

source 

apportionme

nt PCA N/A 

source-

specific 

PM2.5   

sources: sulfur, 

coal, crustal 

Masiol et al. 

(2017/2005-

2016) 

Source 

apportionment 

of PM2.5 

chemically 

speciated mass 

and particle 

number 

concentrations 

in NYC 

Atmospheric 

Environment 

NYC metro 

area 

(queens 

college 

monitor) 

June 2009 - 

July 2010 NYC 

source 

apportionme

nt PMF N/A 

speciated 

PM2.5 

wind 

direction 9 factor solution 



 61 

Gibson E, 

Nunez Y, et al. 

(2019/2001-

2002) 

An overview 

of methods to 

address 

distinct 

research 

questions on 

environmental 

mixtures: an 

application to 

persistent 

organic 

pollutants and 

leukocyte 

telomere 

length 

Environment

al Health 

US adults, 

NHANES USA 

cross-

sectional 

clustering, 

PCA, EFA, 

variable 

selection, 

weighted 

quantile 

sum 

regression, 

BKMR 

leukocyte 

telomere 

length 

persistent 

organic 

pollutants age, sex 

suitable statistical 

method depends 

on research 

question 

(methods paper 

primarily) 

Rich et al. 

(2019/2005-

2016) 

Triggering of 

cardiovascular 

hospital 

admissions by 

source specific 

fine particle 

concentrations 

in urban 

centers of New 

York State Environ Int 

population 

of NYS 

New York 

State 

time-

stratified 

case-

crossover 

design 

PMF, 

conditional 

logistic 

regression 

cardiac 

arrhythmia, 

ischemic 

stroke, 

congestive 

heart failure, 

ischemic heart 

disease, MI 

source-

specific 

PM2.5 

temperature, 

relative 

humidity 

traffic-related, 

road dust 

associated with 

MI 

Squizzato et al. 

(2018/2005-

2016) 

PM2.5 and 

gaseous 

pollutants in 

New York 

State during 

2005–2016: 

Spatial 

variability, 

temporal 

trends, and 

economic 

influences 

Atmospheric 

Environment N/A NYS 

looked at 

overall 

trends in 

emissions 

compared 

with 

economic 

trends 

inverse 

distance 

weighting 

for spatial 

interpolatio

n N/A N/A   

tends in PM2.5 

and gaseous 

pollutants line up 

with economic 

trends 

Schaap et al. 

(2004) 

Artefacts in 

the sampling 

of nitrate 

studied in the 

“INTERCOM

P” campaigns 

of 

Atmospheric 

Environment N/A N/A 

bench 

research   N/A N/A   

stability of nitrate 

at low 

temperatures 
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EUROTRAC-

AEROSOL  

Pinder et al. 

(2008) 

Observable 

indicators of 

the sensitivity 

of PM2.5 

nitrate to 

emission 

reductions—

Part I: 

Derivation of 

the adjusted 

gas ratio and 

applicability at 

regulatory-

relevant time 

scales 

Atmospheric 

Environment N/A 

Eastern 

US   

chemical 

transport 

model PM2.5 nitrate 

NH3, SO2, 

NOx 

emissions temperature 

successfully 

identified robust 

indicators for 

estimating 

sensitiv9ity of 

PM2.5 nitrate to 

SO2 and NH3 

emission changes 

Sun et al. 

(2018) 

Effects of 

ambient 

temperature on 

myocardial 

infarction: A 

systematic 

review and 

meta-analysis 

Environment

al Pollution 

studies of 

MI and 

temperature 

internation

al 

meta-

analysis 

I2, 

Cochran's 

Q test MI 

ambient 

temperatur

e   

heat exposure and 

cold exposure 

both associated 

with MI. same-

day heat 

exposure, lagged 

cold exposure 

Zhou et al. 

(2019/2016-

2017) 

Ambient 

Ammonia 

Concentrations 

Across New 

York State 

JGR 

Atmospheres N/A NYS   

conditional 

bivariate 

probability 

function   ammonia   

rural sites more 

affected by 

transported 

ammonia, urban 

sites more 

affected by 

ammonia from 

traffic  

Thiruvengada

m et al. (2016) 

Unregulated 

greenhouse 

gas and 

ammonia 

emissions 

from current 

technology 

heavy-duty 

vehicles 

J Air Waste 

Manag 

Assoc N/A N/A           

ammonia and 

nitrous oxide can 

be byproducts of 

modern heavy-

duty diesel and 

natural gas 

engines 
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Galan 

Madruga et al. 

(2018/2014-

2015) 

Characterizatio

n and Local 

Emission 

Sources for 

Ammonia in 

an Urban 

Environment 

Bulletin of 

Environment

al 

Contaminati

on and 

Toxicology N/A Madrid   

k-means 

clustering   ammonia   

traffic, garbage, 

and sewage sites 

are sources of 

ammonia in this 

urban study 

Sun et al. 

(2014/2012) 

On-Road 

Ammonia 

Emissions 

Characterized 

by Mobile, 

Open-Path 

Measurements 

Environment

al Science & 

Technology N/A 

NJ and 

California 

measure 

MH3 and 

CO using 

car sensors         

on-road NH3 

emissions may be 

underestimated in 

many studies 

Squizzato et al. 

(2018/2005-

2016) 

A long-term 

source 

apportionment 

of PM2.5 in 

New York 

State 2005-

2016 

Atmospheric 

Environment 

New York 

State 

New York 

State 

source 

apportionme

nt PMF N/A 

speciated 

PM2.5   

sources: 

secondary sulfate, 

secondary nitrate, 

OP-rich, gas, 

diesel vehicles, 

road dust, 

biomass burning, 

fresh, aged sea 

salt, residual oil 

Dutkiewiicz et 

al. 

(2004/2001-

2002) 

Sources of fine 

particulate 

sulfate in New 

York 

Atmospheric 

Environment N/A NYS 

trends in 

sulfate 

backward 

air 

trajectories       

highest 

concentrations 

were associated 

with air masses 

that pass through 

the Ohio River 

Valley and Great 

Lakes Basin 

Hopke et al. 

(2005) 

Reconciling 

Trajectory 

Ensemble 

Receptor 

Model Results 

with 

Emissions 

Environment

al Science & 

Technology N/A 

Underhill, 

VT, 

Brigantine

, NJ   

residence 

time 

analysis       

identified the 

Ohio River 

Valley and Great 

Lakes Basin as 

areas of highest 

probability for 

coal-fired power 

plants 

Amato et al. 

(2010) 

Concentrations

, sources and 

geochemistry 

of airborne 

particulate 

matter at a 

J Environ. 

Mont. N/A Barcelona 

source 

apportionme

nt PCA       

sources: 

traffic/industrial, 

mineral/works, 

sea salt, 

secondary, 

biomass 
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major 

European 

airport 

Thorpe and 

Harrison 

(2008) 

Sources and 

properties of 

non-exhaust 

particulate 

matter from 

road traffic: A 

review 

Science of 

the Total 

Environment N/A N/A review N/A       

road dust can 

have many 

different sources 

(road wear, break 

wear, etc.) 

Peltier et al. 

(2008) 

Residual oil 

combustion: a 

major source 

of airborne 

nickel in New 

York City 

Journal of 

Exposure 

Science and 

Environment

al 

Epidemiolog

y N/A NYC 

source 

tracers 

time series 

at different 

sites       

residual oil 

pollution is 

highest in NYC, 

particularly in 

winter 

Ostro et al. 

(2007/2000-

2003) 

he Effects of 

Components 

of Fine 

Particulate Air 

Pollution on 

Mortality in 

California: 

Results from 

CALFINE 

Environment

al Health 

Perspectives adults 65+ California time-series 

Poisson 

regression 

with natural 

splines 

all-cause 

mortality, 

respiratory 

mortality, 

cardiovascular 

mortality 

PM2.5 and 

19 other 

species 

temperature, 

day of 

week, 

relative 

humidity 

PM2.5 mass, EC, 

OC, and nitrate 

all associated 

with 

cardiovascular 

deaths at different 

lags 

Cao et al. 

(2012/2004-

2008) 

Fine 

Particulate 

Matter 

Constituents 

and 

Cardiopulmon

ary Mortality 

in a Heavily 

Polluted 

Chinese City 

Environment

al Health 

Perspectives 

population 

of Xi'an 

Xi'an, 

China time-series 

Poisson 

regression 

with natural 

splines 

total, 

cardiovascular, 

and respiratory 

mortality 

PM2.5 

constituent

s 

day of 

week, 

temporal 

trend, 

temperature, 

SO2 and 

NO2 

concentratio

ns 

positive 

associations with 

OC, EC, 

ammonium, 

nitrate, chlorine, 

and nickel for at 

least 1 lag day 

with mortality 

Zhang et al. 

(2018/2007-

2016) 

Triggering of 

cardiovascular 

hospital 

admissions by 

fine particle 

concentrations 

in New York 

state: Before, 

Environment

al Pollution 

Residents 

living 

within 15 

miles of 

PM2.5 

monitoring 

sites in 5 

major urban NYS 

Case-

crossover 

Conditional 

logistic 

regression 

Total CVD, 

nine specific 

subtypes PM2.5 Temp, RH 

Pollutant 

concentration and 

CVD admission 

rates decreased 

after admission 

changes, but 

PM2.5 mass was 

still associated 



 65 

during, and 

after 

implementatio

n of multiple 

environmental 

policies and a 

recession 

centers in 

NYS 

with higher rate 

of IHD events 

Ostro et al. 

(2010/2002-

2007) 

Long-Term 

Exposure to 

Constituents of 

Fine 

Particulate Air 

Pollution and 

Mortality: 

Results from 

the California 

Teachers 

Study 

Environment

al Health 

Perspectives 

former 

female 

school 

professional

s in 

California California cohort study Cox 

all-cause, 

cardiopulmona

ry, and IHD 

mortality 

PM2.5 

constituent

s 

16 

individual-

level 

covariates  

(risk 

factors) 

long-term 

exposure to 

PM2.5 

constituents 

increases 

mortality risk in 

several areas, 

particularly those 

associated with 

fossil fuels and 

crustal origin 

Badaloni et al. 

(2017) 

Effects of 

long-term 

exposure to 

particulate 

matter and 

metal 

components on 

mortality in 

the Rome 

longitudinal 

study Environ Int adults 30+ Rome cohort study Cox 

non-accidental, 

CVD, and IHD 

mortality 

PM10, 

PM2.5, 

PM2.5 

constituent

s 

sex, DOB, 

marital 

status, place 

of birth, 

education, 

occupation, 

SEP index 

vehicular exhaust, 

non-tailpipe 

emissions and 

mixed oil 

burning/industry 

play a role in 

mortality 

Franklin et al. 

(2008/2000-

2005) 

The role of 

particle 

composition 

on the 

association 

between PM2.5 

and mortality 

Epidemiolog

y 

Residents 

of 25 US 

communitie

s US Time-series Poisson 

Non-accidental 

death 

Total 

PM2.5, 

select 

constituent

s 

Temperatur

e, season 

Temperature is a 

reasonable 

surrogate for 

ventilation, 

aluminum and 

silicon are 

associated with 

mortality 

Mohammad et 

al. 

(2018/1998-

2013) 

Association of 

weather with 

day-to-day 

incidence of 

myocardial 

infarction: a 

SWEDEHEA

RT nationwide 

JAMA 

Cardiol 

Population 

of Sweden Sweden Time-series Poisson MI 

Air 

temperatur

e, wind 

velocity, 

sunshine 

duration, 

air 

pressure,  

Low air temp, 

low air pressure, 

high wind 

velocity, shorter 

sunshine duration 

associated with 

risk of MI 
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observational 

study 

air 

humidity, 

snow 

precip, rain 

precip, 

change in 

air temp 

Thurston 

GD,…Lall 

R…Arden 

Pope C (2016, 

1982-2004) 

Ischemic heart 

disease 

mortality and 

long-term 

exposure to 

source-related 

components of 

US fine 

particulate air 

pollution 

Environment

al Health 

Perspectives 

adults in 

100 US 

metropolita

n areas USA 

nationwide 

cohort study 

APCA 

(orthogonal

), cox 

proportiona

l hazards 

cardiovascular 

disease PM2.5 

42, incl: 

smoking, 

BMI, 

'occupationa

l dirtiness 

index', 

marital 

status, 

education 

coal combustion 

IHD HR = 1.5 

(CI = 1.02, 1.08), 

traffic borderline, 

crustal, soil and 

biomass not 

associated with 

IHD 

Huang et al. 

(2012/2004-

2008) 

Seasonal 

Variation of 

Chemical 

Species 

Associated 

with Short-

Term 

Mortality 

Effects of 

PM2.5 in 

Xi’an, a 

Central City in 

China 

Am J 

Epidemiol 

population 

of Xi'an 

Xi'an, 

China time-series 

Poisson 

regression 

all-cause and 

cause-specific 

mortality 

PM2.5 and 

PM2.5 

constituent

s 

temperature 

and relative 

humidity 

secondary 

components 

(sulfate/ammoniu

m), combustion 

species (EC, 

sulfur chlorine) 

and transition 

metals 

(chromium, lead, 

nickel, zinc) 

appeared 

responsible for 

most increased 

risk in mortality 

Mills et al. 

(2007) 

Ischemic and 

Thrombotic 

Effects of 

Dilute Diesel-

Exhaust 

Inhalation in 

Men with 

Coronary 

Heart Disease. NEJM 

men with 

coronary 

heart 

disease N/A 

randomized, 

double-

blind, 

crossover 

study t-tests 

myocardial, 

vascular, and 

fibrinolytic 

function 

diesel 

exhaust   

greater increase 

in ischemic 

burden during 

exposure to diesel 

exhaust  

compared to just 

exercise 

Mills et al. 

(2005) 

Diesel Exhaust 

Inhalation 

Causes 

Vascular 

Dysfunction Circulation healthy men N/A 

double-

blind, 

randomized, 

cross-over 

study 

ANOVA, t-

test 

bilateral 

forearm blood 

flow and 

inflammatory 

factors 

diesel 

exhaust   

inhalation of 

dilute diesel 

exhaust impairs 2 

important and 

complementary 
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and Impaired 

Endogenous 

Fibrinolysis 

aspects of 

vascular function 

in humans: the 

regulation of 

vascular tone and 

endogenous 

fibrinolysis 

Yang et al. 

(2020/2011-

2013) 

Fine 

particulate 

matter 

constituents 

and cause-

specific 

mortality in 

China: A 

nationwide 

modelling 

study Environ Int 

population 

of China China time-series 

quasi-

Poisson 

regression 

with 

polynomial 

distributed 

lags 

cause-specific 

mortality 

PM2.5 

constituent

s: OC, EC, 

sulfate, 

nitrate, 

ammonium 

stratification 

by region, 

gender, age 

group, 

education 

level 

EC, OC, sulfate, 

nitrate, and 

ammonium all 

associated with 

mortality at lag 0-

3, particularly 

CVD and MI 

Peterson et al. 

(2020/1990-

2010) 

Impact of 

Reductions in 

Emissions 

from Major 

Source Sectors 

on Fine 

Particulate 

Matter–

Related 

Cardiovascular 

Mortality 

Environment

al Health 

Perspectives 

population 

of USA USA 

difference 

in 

difference 

linear 

regression 

models CVD mortality 

PM2.5 and 

PM22.5 

constituent

s 

median 

household 

income, 

percent 

nonwhite 

pop, 

population 

reductions in 

sulfur-dioxide 

emissions from 

large point 

sources and 

nitrates and EC 

emissions from 

mobile sources 

contributed to 

largest reduction 

in PM2.5 related 

mortality rates 

respectively 
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S3. Study Population Flow Diagram 

People who had myocardial infarction in New 
York 2000-2015 

Excluded:
• People who died from myocardial infarction before receiving medical care

• People who did not seek medical care after experiencing MI symptoms and recovered
•People who sought care in non-acute care facilities

• People who sought care outside of NYC

People who were coded with ICD-9 code 
410.x1 or ICD-10 code I21 in one of the first 

four diagnostic positions

Excluded:
• People who had MI but were not included because of incorrect ICD code

• People who had MI but date of admission was missing

People who received inpatient or outpatient 
medical care for myocardial infarction in acute 

care facilities

Population of New York City 2000-2015

People who were coded with MI ICD codes in 
acute care facilities in NYC 2000-2015, who 

did not have admission types related to 
childbirth or trauma

Excluded:
• People whose admission types were “childbirth” or “trauma” 

Note: Reinfarctions and recurrent MI admissions were included, except readmissions that took place within two days after a 
previous MI admission for that patient. This means that the final sample size of 964,606 MI admissions (1044 excluded 

because of missing date of admission) does not reflect the sample population, but the sample size for MI count.

Excluded
• People who did not have myocardial infarction in NYC 2000-2015
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S4. Thesis Reader and Data Description Form
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